




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计算数学基础第2章沈复民
电子科技大学计算机科学与工程学院Chapter2UnitarySimilarityandUnitaryEquivalence2.0Introduction2.1UnitarymatricesandtheQRfactorization2.2Unitarysimilarity2.3Unitaryandrealorthogonaltriangularizations2.4ConsequencesofSchur’striangularizationtheorem2.5Normalmatrices2.6Unitaryequivalenceandthesingularvalueposition2.7TheCSpositionDefinition1.3.1Let
A,B
Mnbegiven.Wesaythat
BissimilartoA
ifthereexistsanonsingularmatrixS
MnsuchthatB=S1ASThetransformationA
S
1A
SiscalledasimilaritytransformationbythesimilaritymatrixS.Therelation“BissimilartoA”issometimesabbreviatedB
A.1.3SimilarityS1=S
2.0IntroductionSimilarityviaaunitarymatrixU,A
U
AU,isnotonlyconceptuallysimplerthangeneralsimilarity(theconjugatetransposeismucheasiertocomputethantheinverse),butitalsohassuperiorstabilitypropertiesinnumericalcomputations.2.0IntroductionForA
Mn,m,thetransformationA
UAV,inwhichU
MmandV
Mnarebothunitary,iscalledunitaryequivalence.ThetransformationA
S
AS,inwhichS
is
nonsingularbutnot
necessarilyunitary,iscalled
congruence;westudyitinChapter4.Definition2.1.12.1UnitarymatricesandtheQRfactorizationAlistofvectorsx1,,xkCnisorthogonalifforalli
j
,i,j{1,,k}.If,inaddition,forall
i=1,,k(thatis,thevectorsarenormalized),
thenthelistisorthonormal.Theorem2.1.2EveryorthonormallistofvectorsinCnislinearlyindependent.2.1UnitarymatricesandtheQRfactorizationAlinearlyindependentlistneednotbeorthonormal,ofcourse,butonecanapplytheGram-Schmidtorthonormalizationprocedure
(0.6.4)
toitandobtainanorthonormallistwiththesamespan.2.1UnitarymatricesandtheQRfactorizationDefinition2.1.3U
=U1
AmatrixU
Mn
(C)isunitary
if
U
U=I.AmatrixU
Mn(R)isrealorthogonalif
UTU=I.DefinitionAmatrixA
MnissaidtobeHermitian
if
A
=A.If,inaddition,A
Mn(R),Aissaidtobesymmetric.AmatrixA
Mnissaidtobenormal
if
A
A=AA
,thatis,if
AcommuteswithitsHermitianadjoint.AmatrixU
Mnissaidtobeunitary
if
U
U=I.If,inaddition,U
Mn(R),Uissaidtoberealorthogonal.7.1DefinitionsandpropertiesAHermitianmatrixA
Mnispositivedefinite
ifx
Ax0forallnonzeroxCn.(7.1.1a)Itispositivesemidefinite
ifx
Ax0forallnonzeroxCn.(7.1.1b)Implicitinthesedefinitionsisthefactthatif
AisHermitian,then
x
AxisrealforallxCn;see(4.1.3).Conversely,if
A
Mnandx
AxisrealforallxCn,then
AisHermitian,soassumingthatAisHermitianintheprecedingdefinitions,whilecustomary,isactuallysuperfluous;see(4.1.4).Theorem7.2.17.2CharacterizationsandpropertiesAHermitianmatrixispositivesemidefinite
ifandonlyifallofitseigenvaluesarenonnegative.Itispositivedefinite
ifandonlyifallofitseigenvaluesarepositive.SeveralClassesofMatricesChapters2,4,and7HermitianmatrixChapters4Positive(semi)definitematrixChapters7NormalmatrixChapters2UnitarymatrixChapters2Theunitarymatricesin
Mnformaremarkableandimportantset.WelistsomeofthebasicequivalentconditionsforUtobeunitaryin(2.1.4).7.2CharacterizationsandpropertiesTheorem2.1.4
IfU
Mn,thefollowingareequivalent:
(a)
Uisunitary.(U
U=I)
(b)
UisnonsingularandU
=U
1.
(c)
UU
=I.
(d)
U
isunitary.
(e)ThecolumnsofUareorthonormal.
(f)TherowsofUareorthonormal.
(g)ForallxCn,||x||2=||Ux||2,thatis,xandUxhavethesameEuclideannorm.Definition2.1.5AlineartransformationT:
CnCmiscalledaEuclideanisometry
if
||x||2=||Tx||2
forallxCn.Theorem2.1.4saysthatasquarecomplexmatrixU
MnisaEuclideanisometry(viaU:x
Ux)ifandonlyifitisunitary.2.1UnitarymatricesandtheQRfactorizationObservation2.1.6
If
U,V
Mnareunitary(respectively,realorthogonal),thentheUVisalsounitary(respectively,realorthogonal).Theorem2.1.4(b)2.1UnitarymatricesandtheQRfactorizationObservation2.1.7Thesetofunitary(respectively,realorthogonal)matricesinMn
formsagroup
.Thisgroupisgenerallyreferredtoasthen-by-nunitary(respectively,realorthogonal)group,asubgroupofGL(n,C)
(0.5).2.1UnitarymatricesandtheQRfactorization0.5NonsingularityThenonsingularmatricesinMn(F)
formagroup,thegenerallineargroup,oftendenotedbyGL(n,F)
GL(n,C)F=CNotionsof“convergence”and“limit”ofasequenceofmatricesarepresentedprecisely
inChapter5.2.1UnitarymatricesandtheQRfactorizationLemma2.1.8(TheSelectionPrincipleforUnitaryMatrices)2.1UnitarymatricesandtheQRfactorizationLet
U1,U2,Mnbeagiveninfinitesequenceofunitarymatrices.ThereexistsaninfinitesubsequenceUk1,Uk2,,1k1<k2<,suchthatalloftheentriesof
Ukiconverge(assequencesofcomplexnumbers)totheentriesofaunitarymatrixasi
.ThesetofsuchmatricesiseasilycharacterizedastherangeofthemappingA
A1A
forallnonsingularA
Mn.AunitarymatrixUhasthepropertythatU
1
equals
U
.OnewaytogeneralizethenotionofaunitarymatrixistorequirethatU
1besimilartoU
.2.1UnitarymatricesandtheQRfactorizationTheorem2.1.9Let
A
Mnbenonsingular.Then
A1issimilartoA
ifandonlyifthereisanonsingularmatrixB
MnsuchthatA=B1B
.A{B1B
,B
Mnisanonsingularmatrix}A
1issimilartoA
2.1UnitarymatricesandtheQRfactorization2.1UnitarymatricesandtheQRfactorizationIfaunitarymatrixispresentedasa2-by-2blockmatrix,thentheranksofitsoff-diagonalblocksareequal
;theranksofitsdiagonalblocksarerelatedbyasimpleformula.Lemma2.1.102.1UnitarymatricesandtheQRfactorizationLetaunitarymatrixU
Mnbepartitionedas,inwhichU11
Mk.Then
rankU12=rankU21andrankU22=rankU11+n2k.Inparticular,U12=0
ifandonlyifU21=0,inwhichcaseU11andU22
areunitary.
PlanerotationsandHouseholdermatricesarespecial(andverysimple)unitarymatricesthatplayanimportantroleinestablishingsomebasicmatrixfactorizations.2.1UnitarymatricesandtheQRfactorizationcolumnicolumnjrowirowjdenotetheresultofreplacethe
i,iand
j,j
entriesofthen-by-nidentitymatrixbycos
,replacingits
i,j
entry
by
sin
andreplacingits
j,i
entryby
sin
.ThematrixU(
;i,j
)iscalledaplanerotationorGivensrotation.Example2.1.11.Planerotations.Let1
i<j
n
andletU(
;i,j
)Exercise2.1UnitarymatricesandtheQRfactorizationVerifythat
U(
;i,j)
Mn(R)isrealorthogonalforanypairofindicesi,jwith1i<j
nandanyparameter
[0,2
).ThematrixU(
;i,j)carriesoutarotation(throughanangle
)inthei,jcoordinateplaneofRn.2.1UnitarymatricesandtheQRfactorizationExample2.1.12.HouseholdermatricesLetw
Cnbeanonzerovector.TheHouseholdermatrixUw
MnisdefinedbyUw=I2(w
w)1ww
.If
wisaunitvector,then
Uw=I2ww
.Exercise2.1UnitarymatricesandtheQRfactorizationShowthataHouseholdermatrixUw
isboth
unitary
andHermitian,soUw1=Uw.ShowthataHouseholdermatrixUw
actsastheidentityonthecomplementarysubspacew
andthatitactsasareflectionontheone-dimensionalsubspacespannedbyw;thatis,Uw
x=x
if
x
w
and
Uw
w=w.2.1UnitarymatricesandtheQRfactorizationExerciseThefollowingQRfactorizationofacomplexorrealmatrixisofconsiderabletheoreticalandcomputationalimportance.2.1UnitarymatricesandtheQRfactorization(a)
If
n
m,thereisaQ
Mn,mwithorthonormalcolumnsandanuppertriangularR
MmwithnonnegativemaindiagonalentriessuchthatA=QR.
(b)
If
rankA=m,thenthefactorsQandRin(a)areuniquelydeterminedandthemaindiagonalentriesofRarepositive.
(c)
If
m=n,thenthefactorQin(a)isunitary.
(d)ThereisaunitaryQ
Mnandanuppertriangular
R
Mn,m
withnonnegativediagonalentriessuchthatA=QR.
(e)
If
Aisreal,thenthefactorsQandRin(a),(b),(c),and(d)
maybetakentobereal.Theorem2.1.14(QRfactorization)
LetA
Mn,mbegiven.QRfactorizationandQRalgorithmApopularnumericalmethodfor
calculatingeigenvalues(undersomeassumptions)iscalledtheQRalgorithm.ItisbasedontheQRfactorization.QRalgorithm
Let
A0
Mn
begiven.WriteA0=Q0R0,whereQ0andR0areasguaranteedinTheorem2.1.14,anddefineA1=R0Q0.Again,writeA1=Q1R1,withQ1unitaryandR1uppertriangular,andcontinue.Ingeneral,factorAk=Qk
RkanddefineAk+1=Rk
Qk
.QRfactorizationandQRalgorithmExercise
ShowthateachAkproducedbytheQRalgorithmisunitarilysimilartoA0,k=1,2,.QkRk
QkAk
Qk=QkAk+1=Ak+1=Qk
AkQkQkAk+1=AkQk
Undercertaincircumstances(forexample,ifalltheeigenvaluesofA0havedistinct
absolutevalues),theQRiteratesAkwillconvergetoanuppertriangularmatrixask
.SincethisuppertriangularmatrixisunitarilyequivalenttoA0,theeigenvaluesofA0arerevealed.QRfactorizationandQRalgorithmAnimportantgeometricalfactisthatanytwolistscontainingequalnumbersoforthonormalvectorsarerelatedviaaunitarytransformation.2.1UnitarymatricesandtheQRfactorizationTheorem2.1.182.1UnitarymatricesandtheQRfactorizationIf
X=[x1
xk]
Mn,kandY=[y1
yk]Mn,khaveorthonormalcolumns,thenthereisaunitaryU
MnsuchthatY=UX.If
XandYarereal,then
Umaybetakentobereal.Problems2.1UnitarymatricesandtheQRfactorization1.
IfU
Mnisunitary,showthat
|detU|=1.2.
Let
U
Mnbeunitaryandlet
beagiveneigenvalueofU.
Showthat
(a)
|
|=1and(b)
xisa(right)eigenvectorofU
associatedwith
ifandonlyif
xisalefteigenvectorofU
associatedwith
.9.
If
U
Mnisunitary,showthat
U,U
T,andU
areallunitary.–12.
Showthatif
A
Mnissimilartoaunitarymatrix,then
A
1issimilartoA
.2.2UnitarysimilaritySince
U
=
U1foraunitary
U
,thetransformationonMngivenbyA
U
AU
isasimilaritytransformationifUisunitary.Thisspecialtypeofsimilarityiscalledunitarysimilarity.Definition2.2.12.2UnitarysimilarityLet
A,B
Mnbegiven.WesaythatAisunitarilysimilartoBifthereisaunitaryU
MnsuchthatA=UBU
.If
Umaybetakentobereal(andhenceisrealorthogonal),then
Aissaidtobe(real)
orthogonallysimilartoB.WesaythatAisunitarilydiagonalizable
ifitisunitarilysimilartoadiagonalmatrix;Aisrealorthogonallydiagonalizable
ifitisrealorthogonallysimilartoadiagonalmatrix.ExerciseShowthatunitarysimilarityisanequivalencerelation.2.2UnitarysimilarityLet
A,
B
Mn.If
BissimilartoA,then
AandBhavethesamecharacteristicpolynomial.Theorem1.3.31.3SimilarityLet
A,
B
MnandsupposethatAissimilartoB,then(a)
AandBhavethesameeigenvalues.
(b)IfBisadiagonalmatrix,itsmaindiagonalentriesaretheeigenvaluesofA.
(c)
B=0(adiagonalmatrix)ifandonlyifA=0.
(d)
B=I(adiagonalmatrix)ifandonlyifA=I.Corollary1.3.41.3SimilarityThedeterminant,trace,andrankaresimilarityinvariants.rankS1AS=rankAtrS1AS=trAdetS1AS=detATheorem2.2.22.2UnitarysimilarityLet
U
MnandV
Mmbeunitary,let
A=[aij]Mn,m
and
B=[bij]
Mn,m,andsupposethat
A=UBV.Then.Inparticular,thisidentityissatisfiedif
m=nandV=U
,thatis,if
AisunitarilysimilartoB.trB
B
=trA
ATheorem2.2.2saysthattrA
Aisunitarysimilarityinvariant.ExerciseShowthatthematrices
andaresimilarbutnotunitarilysimilar.2.2UnitarysimilarityDefinition1.3.1Let
A,B
Mnbegiven.Wesaythat
BissimilartoA
ifthereexistsanonsingularmatrixS
MnsuchthatB=S1ASThetransformationA
S
1A
SiscalledasimilaritytransformationbythesimilaritymatrixS.Therelation“BissimilartoA”issometimesabbreviatedB
A.1.3SimilarityS1=S
2.2UnitarysimilarityUnitarysimilarity,likesimilarity,correspondstoachangeofbasis,butofaspecialtype–itcorrespondstoachangefromoneorthonormal
basistoanother.Unitarysimilarityimpliessimilaritybutnotconversely.TheunitarysimilarityequivalencerelationpartitionsMnintofinerequivalenceclassesthanthesimilarityequivalencerelation.Theorem2.2.22.2UnitarysimilarityLet
U
MnandV
Mmbeunitary,let
A=[aij]Mn,m
and
B=[bij]
Mn,m,andsupposethat
A=UBV.Then.Inparticular,thisidentityissatisfiedif
m=nandV=U
,thatis,if
AisunitarilysimilartoB.trB
B
=trA
AChapter2UnitarySimilarityandUnitaryEquivalence2.0Introduction2.1UnitarymatricesandtheQRfactorization2.2Unitarysimilarity2.3Unitaryandrealorthogonaltriangularizations2.4ConsequencesofSchur’striangularizationtheorem2.5Normalmatrices2.6Unitaryequivalenceandthesingularvalueposition2.7TheCSposition2.3UnitaryandrealorthogonaltriangularizationsPerhapsthemostfundamentallyusefulfactofelementarymatrixtheoryisatheoremattributedtoIssaiSchur:AnysquarecomplexmatrixAisunitarilysimilartoatriangularmatrixwhosediagonalentriesaretheeigenvaluesofA,inanyprescribedorder.Theorem2.3.1(Schurform:Schurtriangularization)Let
A
Mnhaveeigenvalues
1,,
ninanyprescribedorderandlet
xCnbeaunitvectorsuchthatAx=
1x.(a)ThereisaunitaryU={x,u2
un}MnsuchthatU
AU=T=[ti
j]isuppertriangularwithdiagonalentriesti
i=
i
,
i=1,,n.(b)
IfA
Mn(R)hasonlyrealeigenvalues,then
xmaybechosentoberealandthereisarealorthogonalQ={x
q2
qn}Mn(R)
suchthatQTAQ=T=[tij]isuppertriangularwithdiagonalentriestii=
i,i=1,,n.2.3UnitaryandrealorthogonaltriangularizationsNotethat
neithertheunitarymatrixU
northeuppertriangularmatrixTofTheorem2.3.1isunique.NotonlymaythediagonalentriesofT(theeigenvaluesofA)appearinanyorder,butalsotheunitarilysimilaruppertriangularmatricesmayappearverydifferentabovethediagonal.Example2.3.2VerifythatU
isunitaryand
T2=UT1U
.,.,IftheeignevaluesofAarereorderedandthecorrespondinguppertriangularization(2.3.1)isperformed,theentriesofTabovethemaindiagonalcanbedifferent.Consider2.3UnitaryandrealorthogonaltriangularizationsThereisausefulextensionof(2.3.1):Acommutingfamilyofcomplexmatricescanbereducedsimultaneouslytouppertriangularformbyasingleunitarysimilarity.Theorem2.3.32.3UnitaryandrealorthogonaltriangularizationsLet
F
Mnbeanonemptycommutingfamily.ThereisaunitaryU
MnsuchthatU
AUisuppertriangularforevery
A
F.2.3UnitaryandrealorthogonaltriangularizationsIfarealmatrixAhasanynon-realeigenvalues,thereisnohopeofreducingittoauppertriangularform
TbyarealsimilaritybecausesomemaindiagonalentriesofT(eigenvaluesofA)wouldbenon-real.However,wecanalwaysreduceAtoarealupperquasitriangularform
Tbyarealorthogonalsimilarity;conjugatepairsofnon-realeigenvaulesareassociatedwith2-by-2blocks.0.9.4BlocktriangularmatricesAblockuppertriangularmatrixinwhichallthediagonalblocksare1-by-1or2-by-2issaidtobeupperquasitriangular.Amatrixislowerquasitriangular
ifitstransposeisupperquasitriangular;itisquasitriangular
ifitiseitherupperquasitriangularorlowerquasitriangular.Amatrixthatisbothupperquasitriangularandlowerquasitriangularissaidtobequasidiagonal.withthefollowingproperties:(i)its1-by-1diagonalblocksdisplaytherealeignevaluesofA;(ii)eachofits2-by-2diagonalblockshasaspecialformthatdisplaysaconjugatepairofnon-realeigenvaluesofA:(iii)itsdiagonalblocksarecompletelydeterminedbytheeigenvaluesofA
;theymaybeappearinanyprescribedorder.Theorem2.3.4(RealSchurform)
Let
A
Mn(R)begiven.,a,b
R,b>0,anda
ibareeigenvaluesof
A.(2.3.5a)(a)Thereisarealnonsingular
S
Mn(R)suchthatS1ASisarealupperquasitriangularmatrix,eachAiis1-by-1or2-by-2(2.3.5)(i)Its1-by-1diagonalblocksdisplaytherealeignevaluesofA;(ii)Eachofits2-by-2diagonalblockshasaconjugatepairofnon-realei-genvalues(butnospecialform);(iii)Theorderingofitsdiagonalblocksmaybeprescribedinthefollowingsense:Iftherealeigenvaluesandconjugatepairsofnon-realeigenvluesofA
arelistedinaprescribedorder,thentherealeigenvaluesandconjugatepairsofnon-realeigenvaluesoftherespectivediagonalblocksA1,,AmofQTAQareinthesameorder.Theorem2.3.4(RealSchurform)
Let
A
Mn(R)begiven.(b)Thereisarealorthogonal
Q
Mn(R)suchthatQ
TAQisarealupperquasitriangularmatrixwiththefollowingproperties:2.3UnitaryandrealorthogonaltriangularizationsThereisacommutingfamiliesversionof
Theorem2.3.4:Acommutingfamilyofrealmatricesmaybereducedsimultaneouslytoacommonupperquasitriangularformbyasinglerealorthogonalsimilarity.Problem6.
Let
A,
B
Mnbegiven,andsuppose
AandBaresimultaneouslysimilartouppertriangularmatrices;thatis,S
1ASandS
1
BS
arebothuppertriangularforsomenonsingularS
Mn.ShowthateveryeigenvaluesofAB
BAmustbezero.2.3Unitaryandrealorthogonaltriangularizations2.4ConsequencesofSchur’striangularizationtheoremUse(2.3.1)toshowthatif
A
Mnhaseigenvalues
1,,
n,countingmultiplicity,then
detA=andtrA=.2.4.1ThetraceanddeterminantTheorem2.3.1(Schurform:Schurtriangularization)Let
A
Mnhaveeigenvalues
1,,
ninanyprescribedorderandlet
xCnbeaunitvectorsuchthatAx=
1x.(a)ThereisaunitaryU={x,u2
un}MnsuchthatU
AU=T=[ti
j]isuppertriangularwithdiagonalentriesti
i=
i
,
i=1,,n.(b)
IfA
Mn(R)hasonlyrealeigenvalues,then
xmaybechosentoberealandthereisarealorthogonalQ={x
q2
qn}Mn(R)
suchthatQTAQ=T=[tij]isuppertriangularwithdiagonalentriestii=
i,i=1,,n.2.4ConsequencesofSchur’striangularizationtheorem2.4.3TheCaley-Hamiltontheorem
Thefactthateverysquarecomplexmatrixsatisfiesitsowncharacteristicequationfollowsfrom
Schur’stheoremandanobservationaboutmultiplicationoftriangularmatriceswithspecialpatternsofzeroentries.Lemma2.4.3.1
Supposethat
R=[rij]and
T=[tij]Mnareuppertriangularandthatri
j=0
,1i,j
k
n,andt
k+1,k+1=0.Let
S==RT.Then
,
1i,j
k+1.2.4ConsequencesofSchur’striangularizationtheoremkkk+1k+1k+1k+12.4ConsequencesofSchur’striangularizationtheoremLemma2.4.3.1Theorem2.4.3.2(Cayley-Hamilton)Let
pA
(t)bethecharacteristicpolynomialofA
Mn
.Thenp
A(A)=02.4ConsequencesofSchur’striangularizationtheoremExerciseP.58Example1.3.5
&P.118Example2.4.8.42.4ConsequencesofSchur’striangularizationtheoremWhatiswrongwiththefollowingargument?“SincepA(
i)=0foreveryeigenvalue
iofA
Mn,andsincetheeigenvaluesofpA
(A)arepA(
1),,pA(
n),alleigenvaluesofpA(A)are0.Therefore,pA(A)
=0.”Itisacommonmistakenargumentfor
theCayley-Hamiltontheorem.Givenanexampletoillustratethefallacyintheargument.ExerciseThescalarpolynomialpA(t)isfirstcomputedaspA(t)=det(t
I
A),andonethenformsthematrixpA(A)fromthecharacteristicpolynomial.2.4ConsequencesofSchur’striangularizationtheoremWhatiswrongwiththefollowingargument?“SincepA(t)=det(t
I
A),wehavepA(A)=det(AI
A)=det(A
A)=det0=0.Therefore,pA(A)=
0.”
Theorem2.4.3.2(Cayley-Hamilton)Let
pA
(t)bethecharacteristicpolynomialofA
Mn
.Thenp
A(A)=02.4ConsequencesofSchur’striangularizationtheoremTheCayley-Hamiltontheoremisoftenparaphrasedas“
everysquarematrixsatisfiesitsowncharacteristicequation(1.2.3)”,butthismustbeunderstoodcarefully:ThescalarpolynomialpA(t)isfirstcomputedaspA(t)=det(tI
A);onethencomputesthematrixpA(A)bysubstitutingt
A.2.4ConsequencesofSchur’striangularizationtheoremTheorem2.4.3.2(Cayley-Hamilton)OneimportantuseoftheCayley-HamiltontheoremistowritepowersAkofA
Mn,fork
n,aslinearcombinationsofI,A,A2,,An1.2.4ConsequencesofSchur’striangularizationtheoremTheorem2.4.3.2(Cayley-Hamilton)Example2.4.3.3LetThen
pA(t)=t2
3t+2,so
A2
3A+2I=0.Thus,
A2=3A
2I;A3=A(A2)=3A2
2A=3(3A
2I)
2A=7A
6I;A4=7A2
6A=15A
14I,andsoon.
WecanalsoexpressnegativepowersofthenonsingularmatrixA
aslinearcombinationsofAandI.WriteA2
3A+2I=0
as2I=
A2+3A=A(
A+3I),or
I=A[(
A+3I)].Thus,A
1=
A+I=
,A
2=(A+I)2=A2
A+I=(3A2I)A+I
=A+I
,andsoon.Corollary2.4.3.4Suppose
A
Mn
isnonsingularandlet
pA(t)=tn+an1
t
n1++a1
t+a0.Let
q(t)=(tn1+an1
tn2++a2
t+a1)/a0.
Then
A
1=q(A)isapolynomialinA.2.4ConsequencesofSchur’striangularizationtheoremGivensomethoughttotheconverse:Satisfactionofthesamepolynomialequationsimpliessimilarity-trueorfalse?Exercise2.4ConsequencesofSchur’striangularizationtheoremIf
A,B
Mnaresimilarandg(t)isanygivenpolynomial,showthat
g(A)issimilartog(B),andthatanypolynomialequationsatisfiedbyAissatisfiedbyB.WehaveshownthateachA
Mnsatisfiesapolynomialequationofdegreen,forexample,itscharacteristicequation.ItispossibleforA
Mntosatisfyapolynomialequationofdegreelessthan
n,however.2.4ConsequencesofSchur’striangularizationtheoremExample2.4.3.5Example2.4.3.5ConsiderThecharacteristicpolynomialispA(t)=(t1)3andindeed(A
I)3=0.But(A
I)2=0soAsatisfiesapolynomialequationofdegree2.2.4ConsequencesofSchur’striangularizationtheoremTheequation
AXXA=0
associatedwithcommutativityisaspecialcaseofthelinearmatrixequationAX
XB=C,oftencalledSylvester’sequation.Thefollowingtheoremgivesanecessaryandsufficientconditionfor
Sylvester’sequationtohaveauniquesolutionX
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合同解除与违约责任
- 2025全新版的房屋买卖合同示例
- 2025aa国际劳务合同
- 2025贷款抵押合同模板
- 《应对突发事件案例分析》课件
- 《鲁迅作品解析》课件
- 《分裂过程的区》课件
- 《女娲造人神话》课件
- 《肺癌诊治进展》课件
- 2025年恩施b2货运资格证全题
- 了不起的我课件完整版
- 油藏工程重点知识点
- 金属波纹管的焊接技术
- GB/T 22235-2008液体黏度的测定
- CAD输入文字时提示“找不到主词典无法启动拼写检查程序”怎么办
- -活出心花怒放的生命 课件 心理健康
- 给水泵检修方案
- 设备出入库管理办法
- KEGG代谢通路中文翻译
- GB∕T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法)
- 低成本自动化的开展与案例77页PPT课件
评论
0/150
提交评论