4.5.3函数模型的应用导学案_第1页
4.5.3函数模型的应用导学案_第2页
4.5.3函数模型的应用导学案_第3页
4.5.3函数模型的应用导学案_第4页
4.5.3函数模型的应用导学案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.5.3函数模型的应用导学案【学习目标】1.会利用已知函数模型解决实际问题.(重点)2.能建立函数模型解决实际问题.(重点、难点)3.了解拟合函数模型并解决实际问题.(重点)4.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力.(重点)【自主学习】1.常用函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模型y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=bax+c(a,b,c为常数,b≠0,a>0且a≠1)(4)对数函数模型y=mlogax+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=axn+b(a,b为常数,a≠0)(6)分段函数模型y=eq\b\lc\{\rc\(\a\vs4\al\co1(ax+bx<m,,cx+dx≥m))2.建立函数模型解决问题的基本过程思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:【当堂达标基础练】1.、人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为制定一系列相关政策提供依据.早在1978年,英国经济学家马尔萨斯(,1766—1834)就提出了自然状态下的人口增长模型y=y0ert,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按上表的增长趋势,那么大约在哪一年我国的人口数达到13亿?解:(1)设1951~1959年我国各年的人口增长率分别为r1,r由55196可得1951年的人口增长率r1≈同理可得,r2≈0.0210,r3≈0.0229,r4≈0.0250,r6≈0.0223,r7≈0.0276,r8≈0.0222,于是,1951~1959年期间,我国人口的年平均增长率为:r=(令y0y=55196e0.0221t,t∈根据表中的数据画出散点图,并画出函数y=55196e0.0221t,t∈的图象由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.因为人口基数较大,人口增长过快,与我国经济发展水平产生了较大矛盾,所以我国从20世纪70年代逐步实施了计划生育政策.因此这一阶段的人口增长条件并不符合马尔萨斯人口增长模型的条件,自然就出现了依模型得到的结果与实际不符的情况2、2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的%,能否以此推断此水坝大概是什么年代建成的?解:设样本中碳14的初始量为k,衰减率为p(0<p<1),经过x年后,残余量为y.根据问题的实际意义,可选择如下模型:y=k(1p)x(k∈R,且k≠0;0<p<1;x≥0).由碳14的半衰期为5730年,得于是所以由样本中碳%可知,即解得由计算工具得x≈4912.因为2010年之前的4912年是公元前2902年,所以推断此水坝大概是公元前2902年建成的.3.已知1650年世界人口为5亿,当时人口的年增长率为0.3%;1970年世界人口为36亿,当时人口的年增长率为2.1%.(1)用马尔萨斯人口模型计算,什么时候世界人口是1650年的2倍?什么时候世界人口是1970年的2倍?(2)实际上,1850年以前世界人口就超过了10亿;而2004年世界人口还没有达到72亿.你对同样的模型得出的两个结果有何看法?解:按1650年人口的年增长率0.3%建立人口增长模型得将y=100000代入上述模型得由计算工具得所以,按照1650年人口的年增长率0.3%,232年后(即1882年)世界人口是1650年的2倍,达到10亿解:按1970年人口的年增长率2.1%建立人口增长模型得将y=720000代入上述模型得由计算工具得所以,按照1970年人口的年增长率2.1%,34年后(即2004年)世界人口是1970年的2倍,达到72亿(2)马尔萨斯人口模型是用来刻画自然状态下的人口增长模型,其中的参数r表示人口的年平均增长率.这两段时期都存在人口非自然增长的状况,且计算选择的增长率都不是这两段时期的平均增长率,所以所得出的两个结果与实际存在差异.4.在一段时间内,某地的野兔快速繁殖,野兔总只数的倍增期为21个月,那么1万只野兔增长到1亿1只野兔大约需要多少年?解:设野兔的初始量为1万只经过x个月野兔增长到y万只,增长率为P(P>1)由计算工具得x≈280(月)≈24(年)所以,1万只野兔增长到1亿只野兔大约需要24年.5.1959年,考古学家在河南洛阳偃师市区二里头村发掘出了一批古建筑群,从其中的某样本中检测出碳14的残余量约为初始量的62.76%,能否以此推断二里头遗址大概是什么年代的?6.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?分析:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据解:设第x天所得回报是y元,则方案一可以用函数y=40(x∈N方案二可以用函数y=10x(x∈N方案三可以用函数y=0.4×进行描述.三个模型中,第一个是常数函数,后两个都是增函数.要对三个方案作出选择,就要对它们的增长情况进行分析.我们先用信息技术计算一下三种方案所得回报的增长情况三种方案每天回报表方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案三的函数与方案二的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两个方案增长得快得多,这种增长速度是方案一、方案二所无法企及的.从每天所得回报看,在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.下面再看累计的回报数.通过信息技术列表如下投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,应选择方案三。假如某公司每天给你投资1万元,共投资30天。公司要求你给他的回报是:第一天给公司1分钱,第二天给公司2分钱,以后每天给的钱都是前一天的2倍,共30天,你认为这样的交易对你有利吗?解答如下:公司30天内为你的总投资为:30万元你30天内给公司的回报为:0.01+0.01×2+0.01×22+…+0.01×229=10737418.23≈1074(万元)上述例子只是一种假想情况,但从中可以看到,不同的函数增长模型,增长变化存在很大差异7.某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x,y=log7x,其中哪个模型能符合公司的要求?分析:本例提供了三个不同增长方式的奖励模型,按要求选择其中一个函数作为刻画奖金总数与销售利润的关系.由于公司总的利润目标为1000万元,所以销售人员的销售利润一般不会超过公司总的利润.于是,只需在区间[10,1000]上,寻找并验证所选函数是否满足两条要求:第一,奖金总数不超过5万元,即最大值不大于5;第二,奖金不超过利润的25%,即Y≤0.25X.不妨先画出函数图象,通过观察函数图象,得到初步的结论,再通过具体计算,确认结果.解:借助信息技术画出函数y=5,y=0.25x,y=log7xx的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.下面通过计算确认上述判断.先计算哪个模型的奖金总数不超过5万元.对于模型y=0.25x,它在区间[10,1000]上单调递增,而且当x=20时,y=5,因此,当x>20时,y>5,所以该模型不符合要求;x,由函数图象,并利用信息技术,可知在区间(805,806)内有一个点x0满足1.002因此当x>x0对于模型y=log7x+1,它在区间[10,1000]上单调递增,而且当x=1000时,y=log71000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x∈[10,1000]时,是否有y≤0.25x,即y=log7x+1≤0.25x成立.令f(x)=y=log7x+10.25x,x∈[10,1000],利用信息技术画出它的图象由图象可知函数f(x)在区间[10,1000]上单调递减,因此f(x)≤f(10)≈-0.3167<0,即y=log7x+1<0.25x.所以,当x∈[10,1000]时,x,说明按模型y=log7x+1奖励,奖金不会超过利润的25%.综上所述,模型y=log7x+1确实能符合公司要求.【当堂达标提升练】一、单择题1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……现有2个这样的细胞,分裂x次后得到细胞的个数y与x的函数关系是()A.y=2x B.y=2x-1C.y=2x D.y=2x+1【答案】D【解析】分裂一次后由2个变成2×2=22个,分裂两次后4×2=23个,……,分裂x次后y=2x+1个.2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是()A.310元 B.300元C.390元 D.280元【答案】B【解析】由图象知,该一次函数过(1,800),(2,1300),可求得解析式y=500x+300(x≥0),当x=0时,y=300.3.有一组实验数据如下表所示:t1.993.04.05.16.12u1.54.047.51218.01则能体现这些数据关系的函数模型是()A.u=log2t B.u=2t-2C.u=eq\f(t2-1,2) D.u=2t-2【答案】C【解析】可以先画出散点图,并利用散点图直观地认识变量间的关系,选择合适的函数模型来刻画它,散点图如图所示.由散点图可知,图象不是直线,排除选项D;图象不符合对数函数的图象特征,排除选项A;当t=3时,2t-2=23-2=6,排除B,故选C.4.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(\f(c,\r(x)),x<A,,\f(c,\r(A)),x≥A))(A,c为常数).已知工人组装第4件产品用时30min,组装第A件产品用时15min,那么c和A的值分别是()A.75,25 B.75,16C.60,25 D.60,16【答案】D【解析】由题意知,组装第A件产品所需时间为eq\f(c,\r(A))=15,故组装第4件产品所需时间为eq\f(c,\r(4))=30,解得c=60.将c=60代入eq\f(c,\r(A))=15,得A=16.5.一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现,每间客房每天的价格与住房率之间有如下关系:每间每天定价20元18元16元14元住房率65%75%85%95%要使收入每天达到最高,则每间应定价为()A.20元 B.18元C.16元 D.14元【答案】C【解析】每天的收入在四种情况下分别为20×65%×100=1300(元),18×75%×100=1350(元),16×85%×100=1360(元),14×95%×100=1330(元).二、多选题6.如图,建立平面直角坐标系轴在地平面上,轴垂直于地平面,单位长度为1千米,某炮位于坐标原点,已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关,炮的射程是指炮弹落地点的横坐标.设在第一象限有一飞行物(忽略其大小),其飞行高度为千米,它的横坐标为.则下列结论正确的是(

)A.炮的最大射程为10千米B.炮的最大射程为20千米C.当飞行物的横坐标超过6时,炮弹可以击中飞行物D.当飞行物的横坐标不超过6时,炮弹可以击中飞行物【答案】AD【分析】由,用k表示x并求出最大值判断A,B;由直线与炮弹轨迹有无公共点判断C,D作答.【详解】在中,令,可得,显然,因此,当且仅当,即时等号成立,即炮的最大射程为10千米,A正确,B错误;依题意,炮弹击中飞行物,即直线与炮弹轨迹有公共点,而,,于是得关于的方程,即有正根,当,即时,方程两根之和为正,两根之积为正,因此当时,关于的方程有正根,即当不超过6千米时,炮弹可以击中目标,C错误,D正确.故选:AD7.三个变量,,随变量变化的数据如下表:0510152025305130505113020053130450559016202916052488094478401700611205305580105130155则下列说法合理的是(

)A.关于呈指数增长 B.关于呈指数增长C.关于呈直线上升 D.的增长速度最快【答案】BCD【分析】根据对数函数和指数函数的单调性,再由表格中单调性的特点,可得答案.【详解】随增大而增大,增加量依次是125,375,625,875,…,增长的速度越来越慢,呈对数增长,故A错误;随增大而增大,增加量依次是85,1530,27540,495720,…,增长的速度越来越快,呈指数增长,且增长速度最快,故B,D正确;随增大而增大,增加量依次是25,25,25,…,呈均匀增加状态,呈直线上升,故C正确.故选:BCD.8.甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y(km)与时间x(min)的关系,下列结论正确的是(

)A.甲同学从家出发到乙同学家走了60minB.甲从家到公园的时间是30minC.甲从家到公园的速度比从公园到乙同学家的速度快D.当0≤x≤30时,y与x的关系式为y=x【答案】BD【分析】根据图表逐项判断即可【详解】在A中,甲在公园休息的时间是10min,所以只走了50min,A错误;由题中图象知,B正确;甲从家到公园所用的时间比从公园到乙同学家所用的时间长,而距离相等,所以甲从家到公园的速度比从公园到乙同学家的速度慢,C错误;当0≤x≤30时,设y=kx(k≠0),则2=30k,解得,D正确.故选:BD三、填空题9.已测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y=3x-1.若又测得(x,y)的一组对应值为(3,10.2),则选用________作为拟合模型较好.【答案】甲【解析】对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好.10.某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.【答案】9【解析】设出租车行驶xkm时,付费y元,则y=eq\b\lc\{\rc\(\a\vs4\al\co1(9,0<x≤3,,8+2.15x-3+1,3<x≤8,,8+2.15×5+2.85x-8+1,x>8,))由y=22.6,解得x=9.11.用清水洗衣服,若每次能洗去污垢的eq\f(3,4),要使存留的污垢不超过1%,则至少要清洗的次数是________(lg2≈0.3010).【答案】4【解析】设至少要洗x次,则eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(3,4)))x≤eq\f(1,100),所以x≥eq\f(1,lg2)≈3.322,所以需4次.四、解答题12.某种产品的年产量为a,在今后m年内,计划使产量平均每年比上年增加p%.(1)写出产量y随年数x变化的函数解析式;(2)若使年产量两年内实现翻两番的目标,求p.[解](1)设年产量为y,年数为x,则y=a(1+p%)x,定义域为{x|0≤x≤m,且x∈N*}.(2)y=a(1+p%)2=4a,解得p=100.13.某个体经营者把开始六个月试销A,B两种商品的逐月投资与所获纯利润列成下表:投资A种商品金额(万元)123456获纯利润(万元)0.651.391.8521.841.40投资B种商品金额(万元)123456获纯利润(万元)0.250.490.7611.261.51该经营者准备下月投入12万元经营这两种产品,但不知投入A,B两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).[解]以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如下图所示.图(1)图(2)观察散点图可以看出,A种商品所获纯利润y与投资额x之间的变化规律可以用二次函数模型进行模拟,如图(1)所示,取(4,2)为最高点,则y=a(x-4)2+2,再把点(1,0.65)代入,得0.65=a(1-4)2+2,解得a=-0.15,所以y=-0.15(x-4)2+2.B种商品所获纯利润y与投资额x之间的变化规律是线性的,可以用一次函数模型进行模拟,如图(2)所示.设y=kx+b,取点(1,0.25)和(4,1)代入,得eq\b\lc\{\rc\(\a\vs4\al\co1(0.25=k+b,,1=4k+b,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(k=0.25,,b=0,))所以y=0.25x.即前六个月所获纯利润y关于月投资A种商品的金额x的函数关系式是y=-0.15(x-4)2+2;前六个月所获纯利润y关于月投资B种商品的金额x的函数关系式是y=0.25x.设下月投入A,B两种商品的资金分别为xA,xB(万元),总利润为W(万元),那么eq\b\lc\{\rc\(\a\vs4\al\co1(xA+xB=12,,W=yA+yB=-0.15xA-42+2+0.25xB.))所以W=-0.15eq\b\lc\(\rc\)(\a\vs4\al\co1(xA-\f(19,6)))2+0.15×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(19,6)))2+2.6.当xA=eq\f(19,6)≈3.2(万元)时,W取最大值,约为4.1万元,此时xB=8.8(万元).即该经营者下月把12万元中的3.2万元投资A种商品,8.8万元投资B种商品,可获得最大利润约为4.1万元.【当堂达标素养练】一、单选题1.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率P与加工时间t(单位:分钟)满足函数关系P=at2+bt+c(a,b,c是常数),如图记录了三次实验数据,根据上述函数模型和实验数据,可得到最佳加工时间为()A.3.50分钟 B.3.75分钟C.4.00分钟 D.4.25分钟【答案】B【解析】依题意有eq\b\lc\{\rc\(\a\vs4\al\co1(0.7=9a+3b+c,,0.8=16a+4b+c,,0.5=25a+5b+c,))解得a=-0.2,b=1.5,c=-2.所以P=-0.2t2+1.5t-2=-eq\f(1,5)eq\b\lc\(\rc\)(\a\vs4\al\co1(t-\f(15,4)))2+eq\f(13,16).所以当t=eq\f(15,4)=3.75时,P取得最大值.即最佳加工时间为3.75分钟.2.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进去的新丸体积为a,经过t天后体积V与天数t的关系式为:V=a·e-kt.已知新丸经过50天后,体积变为eq\f(4,9)a.若一个新丸体积变为eq\f(8,27)a,则需经过的天数为()A.125 B.100C.75 D.50【答案】C【解析】由已知,得eq\f(4,9)a=a·e-50k,∴e-k=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,9)))eq\s\up25(eq\f(1,50)).设经过t1天后,一个新丸体积变为eq\f(8,27)a,则eq\f(8,27)a=a·e-kt1,∴eq\f(8,27)=(e-k)t1=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,9)))eq\s\up25(eq\f(1,50)t1),∴eq\f(t1,50)=eq\f(3,2),t1=75.二、多选题3.某打车平台欲对收费标准进行改革,现制订了甲、乙两种方案供乘客选择,其支付费用y(单位:元)与打车里程x(单位:km)的函数关系大致如图所示,则(

)A.当打车里程为8km时,乘客选择甲方案更省钱B.当打车里程为10km时,乘客选择甲、乙方案均可C.打车里程在3km以上时,每千米增加的费用甲方案比乙方案多【答案】ABC【分析】根据图象一一判断即可.【详解】解:对于A,当3<x<10时,甲对应的函数值小于乙对应的函数值,故当打车里程为8km时,乘客选择甲方案更省钱,故A正确;对于B,当打车里程为10km时,甲、乙方案的费用均为12元,故乘客选择甲、乙方案均可,故B正确;对于C,打车3km以上时,甲方案每千米增加的费用为(元),乙方案每千米增加的费用为(元),故每千米增加的费用甲方案比乙方案多,故C正确;对于D,由图可知,甲方案3km内(含3km)付费5元,3km以上时,甲方案每千米增加的费用为1(元),故D错误.故选:ABC.4.某工厂生产一种溶液,按市场要求该溶液的杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少,若使这种溶液的杂质含量达到市场要求,则过滤次数可以为(参考数据:,)(

)A.7 B.8 C.9 D.10【答案】BCD【分析】由解不等式可得答案.【详解】设经过n次过滤,这种溶液的杂质含量达到市场要求,则,即,两边取对数,得,即,得.故选:BCD.5.边际函数是经济学中一个基本概念,在国防、医学、环保和经济管理等许多领域都有十分广泛的应用,函数的边际函数定义为.某公司每月最多生产75台报警系统装置,生产台的收入函数(单位:元),其成本的数(单位:元),利润是收入与成本之差,设利润函数为,则以下说法正确的是(

)A.取得最大值时每月产量为台B.边际利润函数的表达式为C.利润函数与边际利润函数不具有相同的最大值D.边际利润函数说明随着产量的增加,每台利润与前一台利润差额在减少【答案】BCD【分析】求出函数、的解析式,可判断B选项;利用二次函数的基本性质可判断A选项;求出利润函数与边际利润函数的最大值,可判断C选项;利用边际利润函数的单调性可判断D选项.【详解】对于A选项,,二次函数的图象开口向下,对称轴为直线,因为,所以,取得最大值时每月产量为台或台,A错;对于B选项,,B对;对于C选项,,因为函数为减函数,则,C对;对于D选项,因为函数为减函数,说明边际利润函数说明随着产量的增加,每台利润与前一台利润差额在减少,D对.故选:BCD.三、填空题6.2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿.(lg2≈0.3010,lg3≈0.4771,lg7≈0.8451)【答案】2037【解析】由题意,得14(1+1.25%)x-2008>20,即x-2008>eq\f(lg\f(10,7),lg\f(81,80))=eq\f(1-lg7,4lg3-3lg2-1)≈28.7,解得x>2036.7,又x∈N,故x=2037.7.某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:强度(J)1.6×10193.2×10194.5×10196.4×1019震级(里氏)5.05.25.35.4注:地震强度是指地震时释放的能量.地震强度(x)和震级(y)的模拟函数关系可以选用y=algx+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg2≈0.3进行计算)【答案】eq\f(2,3)【解析】由记录的部分数据可知x=1.6×1019时,y=5.0,x=3.2×1019时,y=5.2.所以5.0=alg(1.6×1019)+b,①5.2=alg(3.2×1019)+b,②②-①得0.2=algeq\f(3.2×1019,1.6×1019),0.2=alg2.所以a=eq\f(0.2,lg2)=eq\f(0.2,0.3)=eq\f(2,3).四、解答题8.某企业研发的一条生产线生产某种产品,据测算,其生产的总成本(万元)与月产量(吨)之间的关系式为:,已知此生产线月产量最大为20吨.(1)求月产量为多少吨时,生产每吨产品的平均成本最低,并求出这个最低成本;(2)经过评估,企业定价每吨产品的出厂价为32万元,且最大利润不超过200万元,由该生产线月产量的最大值应为多少?【答案】(1)当月产量为10(吨)时,每吨平均成本最低,最低成本为12万元(2)最大值应为10吨【分析】(1)结合题中所给关系式,列出每吨的平均成本与月产量的关系式,利用基本不等式即可求解;(2)根据题意列出二次不等式,解之即可.(1)设每吨的平均成本为万元,且,则,当且仅当,即(吨)时,每吨平均成本最低,且最低成本为12万元.(2)由题意得,,即,整理得,解得或,因为,所以,所以当最大利润不超过200万元时,年产量的最大值应为10吨.9.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入成本500万元安装了一台新设备,并立即进行生产,预计使用该设备前年的材料费、维修费、人工工资等成本共为万元,每年的销售收入为260万元,设使用该设备前n年的总盈利额为万元.(1)写出关于n的函数关系式,并估计该设备从第几年开始盈利?(利润=销售收入总成本)(2)问使用到第几年末,年平均利润最大,最大值为多少?【答案】(1),第3年(2)在使用第5年末,年平均利润最大为50万元.【分析】(1)求出,再解一元二次不等式可得答案;(2)求出,再利用基本不等式求最值可得答案.(1),令,解得,而,所以该设备第3年开始盈利;(2),因为,当且仅当时取到等号,所以万元,故在使用第5年末,年平均利润最大为50万元.10.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)[解](1)由题意,当0≤x≤20时,v(x)=60;当20≤x≤200时,设v(x)=ax+b,由已知得eq\b\lc\{\rc\(\a\vs4\al\co1(200a+b=0,,20a+b=60,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=-\f(1,3),,b=\f(200,3).))故函数v(x)的表达式为v(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(60,0≤x≤20,,\f(1,3)200-x,20<x≤200.))(2)依题意并结合(1)可得f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(60x,0≤x≤20,,\f(1,3)x200-x,20<x≤200.))当0≤x≤20时,f(x)为增函数,故当x=20时,f(x)在区间[0,20]上取得最大值60×20=1200;当20<x≤200时,f(x)=eq\f(1,3)x(200-x)=-eq\f(1,3)(x-100)2+eq\f(10000,3)≤eq\f(10000,3),当且仅当x=100时,等号成立.所以当x=100时,f(x)在区间(20,200]上取得最大值eq\f(10000,3).综上可得,当x=100时,f(x)在区间[0,20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论