




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省宁阳第四中学2023-2024学年高二数学第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元2.设函数,则和的值分别为()A.、 B.、C.、 D.、3.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.34.已知正方体中,分别为棱的中点,则直线与所成角的余弦值为()A. B.C. D.5.过两点和的直线的斜率为()A. B.C. D.6.已知函数的图象在点处的切线与直线平行,若数列的前项和为,则的值为()A. B.C. D.7.一辆汽车做直线运动,位移与时间的关系为,若汽车在时的瞬时速度为12,则()A. B.C.2 D.38.椭圆的左、右焦点分别为,过焦点的倾斜角为直线交椭圆于两点,弦长,若三角形的内切圆的面积为,则椭圆的离心率为()A. B.C. D.9.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为A. B.C. D.10.已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0 B.1C.2 D.311.直线的一个方向向量为,则它的斜率为()A. B.C. D.12.已知双曲线:的右焦点为,过的直线(为常数)与双曲线在第一象限交于点.若(为原点),则的离心率为()A. B.C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的系数是___________.14.已知直线与之间的距离为,则__________15.如图直线过点,且与直线和分别相交于,两点.(1)求过与交点,且与直线垂直的直线方程;(2)若线段恰被点平分,求直线的方程.16.已知数列满足:,,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,底面是直角梯形,其中,,,,为棱上的点,且.(1)求证:平面;(2)求二面角的正弦值;(3)设为棱上的点(不与,重合),且直线与平面所成角的正弦值为,求的值.18.(12分)已知:(常数);:代数式有意义(1)若,求使“”为真命题的实数的取值范围;(2)若是成立的充分不必要条件,求实数的取值范围19.(12分)如图,四边形是矩形,平面平面,为中点,,,(1)证明:平面平面;(2)求二面角的余弦值20.(12分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值21.(12分)在等差数列中,(1)求数列的通项公式;(2)设,求22.(10分)已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D2、D【解析】求得,即可求得、的值.【详解】,则,则,故,.故选:D.3、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.4、D【解析】以D为原点建立空间直角坐标系,求出E,F,B,D1点的坐标,利用直线夹角的向量求法求解【详解】如图,以D为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选D【点睛】本题主要考查了空间向量的应用及向量夹角的坐标运算,属于基础题5、D【解析】应用两点式求直线斜率即可.【详解】由已知坐标,直线的斜率为.故选:D6、A【解析】函数的图象在点处的切线与直线平行,利用导函数的几何含义可以求出,转化求解数列的通项公式,进而由数列的通项公式,利用裂项相消法求和即可【详解】解:∵函数的图象在点处的切线与直线平行,由求导得:,由导函数得几何含义得:,可得,∴,所以,∴数列的通项为,所以数列的前项的和即为,则利用裂项相消法可以得到:所以数列的前2021项的和为:.故选:A.7、D【解析】首先求出函数的导函数,依题意可得,即可解得;【详解】解:因为,所以又汽车在时的瞬时速度为12,即即,解得故选:D【点睛】本题考查导数在物理中的应用,属于基础题.8、C【解析】由题可得直线AB的方程,从而可表示出三角形面积,又利用焦点三角形及三角形内切圆的性质,也可表示出三角形面积,则椭圆的离心率即求.【详解】由题知直线AB的方程为,即,∴到直线AB距离,又三角形的内切圆的面积为,则半径为1,由等面积可得,.故选:C.9、A【解析】若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质10、A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A11、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A12、D【解析】取双曲线的左焦点,连接,计算可得,即.设,则,,解得:,利用勾股定理计算可得,即可得出结果.【详解】取双曲线的左焦点,连接,,则因为,所以,即.,.设,则,,解得:.,,..故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据二项展开式的通项公式,可知展开式中含的项,以及展开式中含的项,再根据组合数的运算即可求出结果.【详解】解:由题意可得,展开式中含的项为,而展开式中含的项为,所以的系数为.故答案为:.14、或##或【解析】利用平行直线间距离公式构造方程求解即可.【详解】方程可化为:,由平行直线间距离公式得:,解得:或.故答案为:或.15、(1);(2).【解析】本题考查直线方程的基本求法:垂直直线的求法、点关于点对称、点在直线上的待定系数法【详解】(1)由题可得交点,所以所求直线方程为,即;(2)设直线与直线相交于点,因为线段恰被点平分,所以直线与直线的交点的坐标为将点,的坐标分别代入,的方程,得方程组解得由点和点及两点式,得直线的方程为,即【点睛】直线的考法主要以点的对称和直线的平行与垂直为主.点关于点的对称,点关于直线的对称,直线关于直线的对称,是重点考察内容16、.【解析】运用累和法,结合等差数列前项和公式进行求解即可.【详解】因为,,所以当时,有,因此有:,即,当时,适合上式,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】(1)由已知证得,,,以为坐标原点,建立如图所示的空间直角坐标系,根据向量垂直的坐标表示和线面垂直的判定定理可得证;(2)根据二面角的空间向量求解方法可得答案;(3)设,表示点Q,再利用线面角的空间向量求解方法,建立方程解得,可得答案.【详解】(1)因为平面,平面,平面,所以,,又因为,则以为坐标原点,建立如图所示的空间直角坐标系,由已知可得,,,,,,所以,,,因为,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作为平面的法向量,设平面的法向量因为,.所以,即,不妨设,得.,又由图示知二面角为锐角,所以二面角的正弦值为.(3)设,即,,所以,即,因为直线与平面所成角的正弦值为,所以,即,解得,即.【点睛】本题考查利用空间向量求线面垂直、线面角、二面角的求法,向量法求二面角的步骤:建、设、求、算、取:1、建:建立空间直角坐标系,以三条互相垂直的垂线的交点为原点;2、设:设所需点的坐标,并得出所需向量的坐标;3、求:求出两个面的法向量;4、算:运用向量的数量积运算,求两个法向量的夹角的余弦值;5、取:根据二面角的范围和图示得出的二面角是锐角还是钝角,再取值.18、(1);(2).【解析】(1)若,分别求出,成立的等价条件,利用为真,求实数的取值范围;(2)利用是的充分不必要条件,建立不等式关系即可求实数的取值范围【详解】:等价于:即;:代数式有意义等价于:,即,(1)时,即为,若“”为真命题,则,得:故时,使“”为真命题的实数的取值范围是,,(2)记集合,,若是成立的充分不必要条件,则是的真子集,因此:,,故实数的取值范围是19、(1)证明见解析;(2)【解析】(1)利用面面垂直的性质,证得平面,进而可得,平面即可得证;(2)在平面ABC内过点A作Ax⊥AB,以A为原点建立空间直角坐标系,借助空间向量而得解.【详解】(1)因为,为中点,所以,因为是矩形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC内过点A作Ax⊥AB,由(1)知,平面,故以点A为坐标原点,分别以,,的方向为轴,轴,轴的正方向,建立空间直角坐标系,如图:则,,,,,则,所以,,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,即,令,则,,所以,所以,因为二面角为锐角,则二面角的余弦值为.【点睛】思路点睛:二面角大小求解时要注意结合实际图形判断所求角是锐角还是钝角20、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算向量的数量积,,根据数量积结果为零,证明线线垂直,进而证明线面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根据向量的夹角公式即可求解.【小问1详解】证明:因为平面ABCD,平面ABCD,平面ABCD,所以,,又因为,则以A为坐标原点,分别以AB、AD、AP所在的直线为x、y、z轴建立空间直角坐标系,则,,,,,,,,,则,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小问2详解】解:由(1)可知平面PAC,可作为平面PAC的法向量,设平面PCD的法向量,因为,所以,即,不妨设,得,又由图示知二面角为锐角,所以二面角的正弦值为21、(1)(2)【解析】(1)直接利用等差数列的通项公式即可求解;(2)先判断出数列单调性,由时,,时,;然后去掉绝对值,利用等差数列的前项和公式求解即可.【小问1详解】是等差数列,公差;即;【小问2详解】,则由(1)可知前五项为正,第六项开始为负.22、(1);(2)答案见解析,直线过定点.【解析】(1)首先根据顶点为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理服务品牌建设与管理
- 轮流接送小孩协议书
- 餐饮股权收购协议书
- 车位喷绘转让协议书
- 车辆借款使用协议书
- 轮胎维修合同协议书
- 合作伙伴签合同协议书
- eve物品委托协议书
- 进口原料分包协议书
- 金冠股份合作协议书
- 矿坑涌水量预测计算规程
- 娱乐用高空滑索装置项目可行性实施报告
- 广东省深圳市罗湖区2023-2024学年二年级下学期期末考试数学试题
- 四川省成都市2024年中考道德与法治真题试卷 附答案
- 液化天然气汽车加气站技术规范
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
- 加油站百日攻坚行动实施方案
- 供电企业舆情的预防及处置
- GB/T 41666.4-2024地下无压排水管网非开挖修复用塑料管道系统第4部分:原位固化内衬法
- 4、《通向金融王国的自由之路》
- 大学生职业素养(高职)全套教学课件
评论
0/150
提交评论