2022年福建省厦门市翔安区初中学业质量检查数学试卷_第1页
2022年福建省厦门市翔安区初中学业质量检查数学试卷_第2页
2022年福建省厦门市翔安区初中学业质量检查数学试卷_第3页
2022年福建省厦门市翔安区初中学业质量检查数学试卷_第4页
2022年福建省厦门市翔安区初中学业质量检查数学试卷_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年福建省厦门市翔安区初中学业质量检查数学试卷参考答案与试题解析一、选择题(本大题有7题,每小题3分,共21分,每小题都有四个选项,其中有且只有一个选项是正确的)1.(3分)计算:﹣2+3=() A. 1 B. ﹣1 C. 5 D. ﹣5分析: 根据异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值,可得答案.解答: 解:﹣2+3=+(3﹣2)=1.故选:A.点评: 本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(3分)四个几何体中,三视图都是相同图形的是()A. 长方体 B. 圆柱 C. 球 D. 三棱柱考点: 简单几何体的三视图.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答: 解:A、长方体的三视图分别为长方形,长方形,正方形,不符合题意;B、圆柱的三视图分别为长方形,长方形,圆,不符合题意;C、球的三视图均为圆,正确;D、正三棱柱的主视图为两个长方形的组合体,左视图为长方形,俯视图为三角形,错误,故选:C.点评: 本题考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.3.(3分)在函数y=中,自变量x的取值范围是() A. x≠2 B. x>2 C. x≥2 D. x≠0考点: 函数自变量的取值范围.分析: 根据分母不等于0列式计算即可得解.解答: 解:由题意得,x﹣2≠0,解得x≠2.故选A.点评: 本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3分)“明天下雨的概率为80%”这句话指的是() A. 明天一定下雨 B. 明天80%的地区下雨,20%的地区不下雨 C. 明天下雨的可能性是80% D. 明天80%的时间下雨,20%的时间不下雨考点: 概率的意义.分析: 根据概率的意义找到正确选项即可.解答: 解:“明天下雨的概率为80%”说明明天下雨的可能性是80%,即P(A)=80%.故选C.点评: 关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.5.(3分)正方形网格中,∠AOB如图放置,则sin∠AOB=() A. B. C. D. 2考点: 锐角三角函数的定义.专题: 网格型.分析: 找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB的对边与斜边的比,就可以求出.解答: 解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB===.故选B.点评: 通过构造直角三角形来求解,利用了锐角三角函数的定义.6.(3分)不等式组的解集是() A. x>﹣1 B. ﹣1<x<2 C. x<2 D. x<﹣1或x>2考点: 解一元一次不等式组.分析: 分别求出各不等式的解集,再求出其公共解集即可.解答: 解:由①得,x>﹣1,由②得,x<2,∴原不等式组的解集是﹣1<x<2.故选B.点评: 主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为() A. 2 B. 3 C. 4 D. 5考点: 坐标与图形变化-平移.专题: 压轴题.分析: 直接利用平移中点的变化规律求解即可.解答: 解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.点评: 本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.二、填空题(本大题有10小题,每小题4分,共40分)8.(4分)﹣的相反数是.考点: 相反数.分析: 求一个数的相反数就是在这个数前面添上“﹣”号.解答: 解:根据相反数的定义,﹣的相反数是.点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.9.(4分)“节约光荣,浪费可耻”,据统计我国每年浪费粮食约8000000吨,这个数据用科学记数法可表示为8×106吨.考点: 科学记数法—表示较大的数.分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答: 解:将8000000用科学记数法表示为:8×106.故答案为:8×106.点评: 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(4分)抛物线y=(x﹣1)2+2的顶点坐标是(1,2).考点: 二次函数的性质.分析: 直接利用顶点式的特点可求顶点坐标.解答: 解:因为y=(x﹣1)2+2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,2).点评: 主要考查了求抛物线的对称轴和顶点坐标的方法.11.(4分)如图,点D、E分别是△ABC中AB、AC边的中点,已知DE=3,则BC=6.考点: 三角形中位线定理.分析: 根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,ED=BC,进而由DE的值求得BC.解答: 解:∵D,E分别是△ABC的边AC和AC的中点,∴DE是△ABC的中位线,∵DE=2,∴BC=2DE=6.故答案是:6.点评: 本题主要考查三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.12.(4分)已知反比例函数y=(x>0),请你补充一个条件k=1(答案不唯一),使y的值随着x值的增大而减小.考点: 反比例函数的性质.专题: 开放型.分析: 本题考查反比例函数的图象和性质.解答: 解:由于x>0,根据反比例函数的性质,y的值随着x值的增大而减小时,k>0,可取k=1,k=2,k=3等.点评: 定义:一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.因为y=是一个分式,所以自变量x的取值范围是x≠0.而y=有时也被写成xy=k或y=kx﹣1.性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数.定义域为x≠0;值域为y≠0.③因为在y=(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.④在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|k|.⑤反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x,y=﹣x(即第一、三象限,第二、四象限角平分线),对称中心是坐标原点.13.(4分))某市6月2日至8日的每日最高温度如图,则这组数据的中位数是29℃.考点: 中位数;折线统计图.分析: 先根据图表写出2日到8日的气温,然后根据中位数的概念求解.解答: 解:2日到8日的气温为:27,30,28,29,30,29,30,这组数据按照从小到大的顺序排列为:27,28,29,29,30,30,30,则中位数为:29℃.故答案为:29℃.点评: 本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.(4分)已知m2﹣n2=6,m+n=3,则m﹣n的值是2.考点: 平方差公式.分析: 直接利用平方差公式求出即可.解答: 解:∵m2﹣n2=6,m+n=3,∴(m﹣n)(m+n)=6,则m﹣n的值是2.故答案为:2.点评: 此题主要考查了平方差公式的应用,熟练利用公式法求出是解题关键.15.(4分)某市按以下规定收取每月的水费:用水量不超过6吨,按每吨元收费;如果超过6吨,未超过部分仍按每吨元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨元,那么该用户5月份实际用水8吨.考点: 一元一次方程的应用.分析: 水费平均为每吨元大于元,说明本月用水超过了6吨,那么标准内的水费加上超出部分就是实际水费.根据这个等量关系列出方程求解.解答: 解:设该用户5月份实际用水x吨,则×6+(x﹣6)×2=,+2x﹣12=,=,x=8.答:该用户5月份实际用水8吨.故答案为8.点评: 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.16.(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.考点: 矩形的判定与性质;垂线段最短;勾股定理.分析: 连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.解答: 解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===5,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CP,即×4×3=×5•CP,解得CP=.故答案为:.点评: 本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CP⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.17.(4分)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是(0,).考点: 一次函数综合题.专题: 压轴题.分析: 利用三角形全等性质.解答: 解:由题意得:A(﹣3,0),B(0,4);∴OA=3,OB=4.那么可得AB=5.易得△ABC≌△ADC,∴AD=AB=5,∴OD=AD﹣OA=2.设OC为x.那么BC=CD=4﹣x.那么x2+22=(4﹣x)2,解得x=,∴C(0,).点评: 本题用到的知识点为:翻折前后的三角形全等.三、解答题(本题有9题,共89分)18.(7分)|﹣1|﹣2÷+(﹣2)2.考点: 有理数的混合运算.专题: 计算题.分析: 原式第一项利用绝对值的代数意义化简,第二项利用除法法则计算,最后一项利用乘方的意义计算即可得到结果.解答: 解:原式=1﹣2×3+4=1﹣6﹢4=﹣1.点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(7分)画出如图中的△ABC关于y轴对称的图形.考点: 作图-轴对称变换.专题: 作图题.分析: 根据网格结构找出点B、C关于y轴的对称点的位置,然后与点A顺次连接即可.解答: 解:△ABC关于y轴对称的图形△AB′C′如图所示.点评: 本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.(7分)如图,已知AB∥CD,若∠A=20°,∠E=35°,求∠C.考点: 三角形的外角性质;平行线的性质.分析: 根据三角形的外角等于和它不相邻的两个内角的和以及平行线的性质进行求解.解答: 解:∵∠A=20°,∠E=35°,∴∠EFB=∠A+∠E=55°,∵AB∥CD,∴∠C=∠EFB=55°.点评: 此题考查了三角形的外角的性质以及平行线的性质.三角形的外角等于和它不相邻的两个内角的和;两条直线平行,则同位角相等.21.(6分)为了解“节约用水”活动开展一个月来的成效,某单位随机调查了20名职工家庭一个月来的节约用水情况,如下表所示:节约水量(吨) 1 2职工数(人) 10 5 4 1请你根据上表提供的信息估计该单位100位职工的家庭一个月大约能节约用水多少吨?考点: 用样本估计总体;加权平均数.分析: 根据加权平均数的计算公式求出样本的平均数,再乘以100,即可得出答案.解答: 解:根据题意得:(×10+1×5+×4+2×1)÷20×100=×100=90(吨).答:该单位100位职工家庭一个月大约节约用水90吨.点评: 此题考查了加权平均数和用样本估计总体,根据加权平均数的计算公式求出样本的平均数是本题的关键;用样本估计整体让整体×样本的百分比即可.22.(6分)先化简,再求值:(a+b)2+a(a﹣2b),其中a=1,b=.考点: 整式的混合运算—化简求值.分析: 先算乘法,再合并同类项,最后代入求出即可.解答: 解:(a+b)2+a(a﹣2b)=a2+2ab+b2+a2﹣2ab=2a2+b2,当a=1,b=时,原式=2×12+()2=4.点评: 本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力,题目比较典型,难度适中.23.(6分)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点: 线段垂直平分线的性质.分析: 先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答: 解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评: 本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.24.(6分)在学习概率知识时,王老师布置了这样一道题目:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个.要求同学按两种规则摸球:①摸出一个球后放回,再摸出一个球;②一次性摸两个球.那么,请你通过计算说明哪种方法摸到两个红球的概率较大?考点: 列表法与树状图法.分析: 列举出所有情况,看两次都摸到红球的情况占总情况的多少即可知道哪种方法摸到两个红球的概率较大.解答: 解:①:摸出一个球后放回,再摸出一个球时,,共有16种等可能的结果数,其中两个都是红球的占4种,所以两次都摸到红球的概率=;②一次性摸两个球时,∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.∵>,∴两次摸球的概率较大.点评: 本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比25.(6分)如图,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.(1)求∠CBD的度数;(2)求下底AB的长.考点: 梯形;等腰三角形的性质.分析: (1)求∠CBD的度数,根据BC=CD,得到∠CDB=∠ABD,根据AB∥CD,只要求出∠ABD的度数就可以.(2)Rt△ABD中,∠ABD=30°,则AB=2AD.解答: 解:(1)∵∠A=60°,BD⊥AD∴∠ABD=30°(2分)又∵AB∥CD∴∠CDB=∠ABD=30°(4分)∵BC=CD∴∠CBD=∠CDB=30°(5分)(2)∵∠ABD=∠CBD=30°∴∠ABC=60°=∠A(7分)∴AD=BC=CD=2cm∴AB=2AD=4cm.(9分)点评: 本题主要考查了等腰三角形的性质,等边对等角.26.(6分)为了预防流感,学校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比,燃烧后,y与x成反比(如图),现测得药物10min燃烧完,此时,教室内每立方米空气含药量为16mg.已知每立方米空气中含药量低于4mg时对人体无害,那么从消毒开始经多长时间后学生才能进教室?考点: 反比例函数的应用.分析: 由于当每立方米空气中含药量低于16mg时,对人体方能无毒害作用,把y=16代入反比例函数解析式中即可求出从燃烧开始,经多长时间学生才可以回教室.解答: 解:设燃烧后的函数解析式为y=,∵图象经过点(10,16),∴k=160,∴y=.由,得x=40∴从消毒开始要经过40分钟后学生才能进教室.点评: 此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法即可求出它们的关系式.27.(6分)如图,已知菱形AOBD的A、B、D三点在⊙O上,延长BO至点P,交⊙O于点C,且BP=3OB.求证:AP是⊙O的切线.考点: 切线的判定.专题: 证明题.分析: 连接OD、AO,根据菱形的性质得AO=OB=BD=DA,则可判断△OAD和△OBD都为等边三角形,所以∠AOD=∠BOD=60°,则∠AOP=60°,于是又可判断△AOC为等边三角形,所以AC=OC,∠ACO=∠OAC=60°,由PB=3BO得到CP=OC=AC,根据等腰三角形的性质得∠P=∠CAP,然后利用三角形外角性质有∠P+∠CAP=∠ACO=60°,得到∠CAP=30°,所以∠OAP=90°,最后利用切线的判定定理得到AP为⊙O的切线.解答: 证明:连接OD、AO,如图,∵四边形AOBD为菱形,∴AO=OB=BD=DA,∴△OAD和△OBD都为等边三角形,∴∠AOD=∠BOD=60°,∴∠AOP=60°,又∵OA=OC,∴△AOC为等边三角形,∴AC=OC,∠ACO=∠OAC=60°,∵PB=3BO,OC=OB,∴CP=OC=AC,∴∠P=∠CAP,∵∠P+∠CAP=∠ACO=60°,∴∠CAP=30°,∴∠OAP=90°,∴OA⊥AP,∴AP为⊙O的切线.点评: 本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和等边三角形的判定与性质.28.(6分)如图,已知A(a,m)、B(2a,n)是反比例函数y=(k>0)与一次函数y=﹣x+b图象上的两个不同的交点,分别过A、B两点作x轴的垂线,垂足分别为C、D,连结OA、OB,若已知1≤a≤2,则求S△OAB的取值范围.考点: 反比例函数系数k的几何意义.分析: 先根据函数图象上点的坐标特征得出m=,n=,=﹣a+b,=﹣a+b,于是k=a2,再由反比例函数系数k的几何意义可知S△OAC=S△OBD,那么S△OAB=S△OAC﹣S△OBD+S梯形ABDC=S梯形ABDC=2a2,根据二次函数的性质即可求解.解答: 解:∵A(a,m)、B(2a,n)在反比例函数y=(k>0)的图象上,∴m=,n=,∵A(a,m)、B(2a,n)在一次函数y=﹣x+b图象上,∴=﹣a+b,=﹣a+b,解得:k=a2,∴S△OAB=S△OAC﹣S△OBD+S梯形ABDC=S梯形ABDC=(+)(2a﹣a)=××a=k=×a2=2a2.当1≤a≤2时,S△OAB=2a2,随自变量的增大而增大,此时2≤S△OAB≤8.点评: 本题考查了函数图象上点的坐标特征,反比例函数系数k的几何意义,梯形的面积,二次函数的性质,综合性较强,难度适中.29.(10分)如图,将平行四边形ABCD的边DC延长至点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)连接AC、BE,则当∠AFC与∠D满足什么条件时,四边形ABEC是矩形?请说明理由.考点: 矩形的判定;全等三角形的判定与性质;平行四边形的性质.分析: (1)由四边形ABCD是平行四边形,CE=DC,易证得∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,则可证得△ABF≌△ECF;(2)首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.解答: 解:(1)证明:在平行四边形ABCD中,AB∥CD,AB=CD,∴∠BAE=∠AEC,又∵CE=CD,∴AB=CE,在△ABF和△ECF中,,∴△ABF≌△ECF(AAS);(2)当∠AFC=2∠D时,四边形ABEC是矩形.∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论