版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章二元一次方程组§认识二元一次方程组【教学目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。2.通过讨论和练习,进一步培养学生的观察、比较、分析的能力。3.通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。【重点】二元一次方程组的含义【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。【教学过程】引入、实物投影(P181图)1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言)这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次练习:(投影)下列方程有哪些是二元一次方程+2y=1xy+x=13x-=5x2-2=3xxy=12x(y+1)=c2x-y=1x+y=0议一议、师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?(两个方程中x的表示老牛驮的包裹数,y表示小马的包裹数,x、y的含义分别相同。)师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成x-y=2x+1=2(y-1)像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。如:2x+3y=35x+3y=8x-3y=0x+y=8做一做、x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解x=6,y=2是方程x+y=8的一个解,记作x=6同样,x=5y=2y=3也是方程x+y=8的一个解,同时x=5又是方程5x+3y=34的一个解,y=3二元一次方程各个方程的公共解,叫做二元一次方程组的解。随堂练习、(P184)小结:含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。二元一次方程的解是一个互相关联的两个数值,它有无数个解。含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。6.作业P188习题。教后感:通过对实际问题的分析、讨论和练习,了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。进一步培养学生的观察、比较、分析的能力,体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。§求解二元一次方程组(一)【教学目标】1.会用代入消元法解二元一次方程组2.了解解二元一次方程组的消元思想,初步体现数学研究中“化未知为已知”的化归思想,从而“变陌生为熟悉”3.利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想【重点】用代入法解二元一次方程组,基本方法是消元化二元为一元.【难点】用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.【教学过程】引入上节课我们的老牛和小马的包裹谁的多的问题,经过大家的共同努力,得出了二元一次方程组x-y=2①到底谁的包裹多呢?x+1=2(y-1)②这就需要解这个二元一次方程组.一元一次方程我们会解,二元一次方程组如何解呢?我们大家知道二元一次方程只需要消去一个未知数就可变为一元一次方程,那么我们发现:由①得y=x-2由于方程组相同的字母表示同一个未知数,所以方程②中的y也等于x-2,可以用x-2代替方程②中的y.这样就得到大家会解的一元一次方程了.做一做我们知道了解二元一次方程组的一种思路,下面我们来做一做解方程组3x+2y=8①x=②解:将②代入①,得3(y+3)+2y=143y+9+2y=145y=5y=1将y=1代入②,得x=4所以原方程组的解是x=4y=1例2、解方程组2x+3y=16①x+4y=13②教师先分析:此题不同于例1,(即用含有一个未知数的代数式表示另一个未知数),②式不能直接代入①,那么我们应当怎样处理才能转化为例1②式这样的形式呢?请同学回答(应先对②式进行恒等变化,把它化为例1中②式那样的形式.)分小组合作完成上述例题,请两个小组的代表上黑板上来板演解:由②,得x=13-4y将③代入①,得2(13-4)S+3y=1626-8y+3y=16-5y=-10y=2将代入③,得x=5所以原方程组的解是x=5y=2议一议、上面解方程组的基本思路是什么?主要步骤有哪些?上面解方程组的基本思路是“消元”——把“二元”变为“一元”。主要步骤是:①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,②将这个代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程式。③解这个一元一次方程。④把求得的一次方程的解代入方程中,求得另一个未知数值,组成方程组的解。这种解方程组的方法称为代入消元法。简称代入法。练一练、1、已知x+3y-6=0,用含x的代数式表示y为,用含y的代数式表示x为.2、书本P188随堂练习小结、1、今天我们学习了二元一次方程组的解法,你有什么体会?2、解二元一次方程组的思路是消元,把二元变为一元3、解题步骤概括为三步即:①变、②代、③解、4、方程组的解的表示方法,应用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?y=?5、由一个方程变形得到的一个含有一个未知数的代数式必须代入另一个方程中去,否则会出现一个恒等式。作业、1、已知x=1是方程组ax+by=2的解,则a、b的值是多少?y=1x-by=32、若方程组4x+3y=1的解x与y相等,则a的值是多少?ax+(a-1)y=3教后感:本节课是利用小组合作探讨学习,使学生正确掌握用代入消元法解二元一次方程组的方法下,通过学生自己的观察、发现,初步体现数学研究中“化未知为已知”的化归思想,从而“变陌生为熟悉”,使学生领会朴素的辩证唯物主义思想.§求解二元一次方程组(二)一、教学目标设计:了解并会用加减消元法解二元一次方程组。了解解二元一次方程组的消元思想,体会数学中“化未知为已知”的化归思想。初步体验二元一次方程组解法的多样性和选择性。教学重点和难点:二、教学重点:会用加减消元法解二元一次方程组。会用加减消元法解二元一次方程组。三、教学难点:掌握解二元一次方程组的“消元”思想。四、教学过程设计:1、创设情境:怎样解下面的二元一次方程组呢?分析:观察方程组中的两个方程,未知数y的系数互为相反数,把这两个方程两边分别相加,就可以消去未知数y,得到一个一元一次方程;(3x+5y)+(2x-5y)=21+(-11)①左边+②左边=①左边+②左边3X+5y+2x-5y=105x+0y=105x=10解:由①+②得:5x=10x=2把x=2代入①,得y=3所以原方程组的解是2、探索尝试:参考小丽的思路,怎样解下面的二元一次方程组呢?例1解下列方程组.分析:观察方程组中的两个方程,未知数x的系数相等,都是2.把这两个方程两边分别相减,就可以消去未知数x,同样得到一个一元一次方程.解:把②-①得:8y=-8y=-1把y=-1代入①,得2x-5╳(-1)=7解得:x=1所以原方程组的解是随堂练习:指出下列方程组求解过程中有错误步骤,并给予订正:解:①-②,得解①-②,得-2x=122x=4-4,x=-6x=0正确的解是:解:①-②,得解:①+②,得8x=162x=4+4,x=4x=24.议一议:上面这些方程组的特点是什么?解这类方程组基本思路是什么?主要步骤有哪些?这些方程组的特点是同一个未知数的系数相同或互为相反数这类方程组基本思路:加减消元----二元----一元主要步骤:加减----消去一个元求解----分别求出两个未知数的值写解----写出方程组的解5.做一做例2.用加减法解下列各方程组分析:(1)用加减消元法解方程组时,若哪个未知数系数的绝对值正好相等,就可先消哪个未知数;若两个未知数的系数绝对值均不等,则可选定一个未知数,通过变形使其绝对值相等,再进行消元.(2)运用加减消元法解方程组的条件是方程组中两个方程的某个未知数的系数的绝对值相等,当方程组中两方程不具备这种特点时,必须用等式性质2来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值已经相等的新的方程组,从而为加减消元法解方程组创造条件.①×3得6x+9y=36③②×2得6x+8y=34④③-④得y=2把y=2代入①,得解得:x=3所以原方程组的解是说明:1.加减消元法的依据是等式性质1,即在一个方程左右两边分别加上或减去另一个方程的左右两边,所得的结果仍是等式.经过这样的运算,其中一个未知数被消去了,原来的“二元”化为“一元”,转化为一元一次方程,从而可求出原方程组的解来.2.对于不是标准的二元一次方程组,可先通过去分母或去括号,将其变为标准的二元一次方程组后再消元5.试一试:运用加减消元法解下列方程组:(3)6.探索与思考:在解方程组时,小张正确的解,小李由于看错了方程组中的C得到方程组的解为,试求方程组中的a、b、c的值。7.小结:加减消元法解方程组基本思路是什么?主要步骤有哪些?加减消元法解方程组基本思路:加减消元----二元---一元主要步骤有:变形----同一个未知数的系数相同或互为相反数加减----消去一个元求解----分别求出两个未知数的值写解----写出方程组的解8.作业教后感:1.本节课是使学生正确掌握用加减法解二元一次方程组的方法下,通过学生自己的观察、发现、总结、归纳,探索加减法解二元一次方程组的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。§应用二元一次方程组---鸡兔同笼【教学目标】1.使学生初步掌握列二元一次方程组解应用题2.通过将实际问题转化成纯数学问题的应用训练,培养学生分析问题、解决问题的能力。【教学重点】根据等量关系列二元一次方程组解应用题。【教学难点】根据题意找出等量关系,列出方程。【教学过程】我们伟大祖国具有五千年的文明史,在历史的长河中,为科学知识的创新和发展作出了巨大的贡献,特别在数学领域有[九章算术]、[孙子算经]等古代名著流传于世,普及趋于民众,许多问题浅显易懂,趣味性强,如[九章算术]下卷第三题目“雉兔同笼”等,漂洋过海传到了日本等国,对中国古代文明史的传播起了很大作用。“雉兔同笼”题为:“今有雉兔同笼,上有三十五关,下有九十四足,问雉兔各几何?”问题1、“上有三十五头”指的意思是什么?“下有九十四足”呢?答:“上有三十五头”指的鸡和兔共有三十五个头,“下有九十四足”指的是鸡和兔共有九十四只脚。问题2、你能根据问题1中的的数量关系列出方程吗?并能解决这个有趣的问题吗?(分小组进行讨论,然后请两个小组的代表到黑板上板演)解:设有鸡x只,兔y只,则x+y=35解之得x=232x+4y=94y=12答:共有鸡23只,兔12只。这个古老的数学问题,用今天的方程解决,体现了古为今用的原则,为后人理解了数学的过去和现在,当代的著名的数学家陈省生教授在说起“鸡兔同笼”时,曾另有一番别有风趣的延伸:“全体鸡兔立正,兔子提起前面的两只脚,请问现在共有几只脚?”……中国是一个伟大的四大文明古国,像这样浅显有趣的数学题目还有很多,我们的书上就提供了这样的一个例题以绳测井,若将绳三折测之,绳多五尺,若将绳四折测之,绳多一尺,绳长、井深各几何?接下来老师看一下,那位同学的古文水平好,那位同学能自告奋勇地解释一下,这段古文的意思?(用绳子测量水井的深度,如果将绳子折成三等分,一份绳子长比井深多5尺;如果将绳折成四等份,一份绳子比井深多1尺,绳子、井深各是多少尺?)(分小组进行讨论,然后请两个小组的代表到黑板上板演)解:设绳子长x尺,井深y尺,则解之得x=48y=11答:绳子长为48尺,井深11尺。议一议从上面的两个问题的解决中,你得到了什么感悟,有什么收获?请与同学们交流。用方程组解决实际问题时应该注意下列几个问题:认真读题和审题,弄清古代问题的现实意义正确设出未知数找出相等关系,并列出方程组。解此方程组写出答案练一练古代有一个马快,一天晚上他在野外的一个茅屋里,听到外边来了一群人,在分脏,在吵闹,他隐隐约约地听到几个声音,下面有这一古诗为证:隔壁听到人分银,不知人数不知银。只知每人五两多六两,每人六两少五两,问你多少人数多少银?列方程组解古算题:“今有牛五、羊二、直金十两,牛二、羊五,直金八两,牛、羊各直金几何?”题目大意是:5头牛、2只羊共价值10两“金”、2头牛、5只羊共价值8两“金”、每头牛、每只羊共价值多少“金”?[可设每头牛值“金”x两,每只羊值“金”y两,则有方程组5x+2y=10解之得x=2x+5y=8y=小结经过本节课的学习,你有什么收获和体会?六、作业P199习题。教后感:通过将实际问题转化成纯数学问题的应用训练,使学生根据等量关系列二元一次方程组解应用题。初步掌握列二元一次方程组解应用题培养学生分析问题、解决问题的能力。§应用二元一次方程组---增收节支【教学目标】1.会正确地运用表格分析与“增收节支”相似一类问题的数量关系,会列二元一次方程组这类问题。2.培养学生分析问题和解决问题的能力。3.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生的数学应用能力。【教学过程】议一议增长(亏损)率问题的公式?原量(1+增长率)=新量,或原量(1—亏损率)=新量,2、银行利率问题中的公式?利息=本金×利率×期数,本息和本金+利息新授、某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?设去年的总产值为x万元,总支出为y万元,则有总产值/万元总支出/万元利润/万元去年xy200今年(小组讨论,完成上表)总产值/万元总支出/万元利润/万元去年xy200今年(1+20%)x(1—10%)y780根据题意得:x-y=200,解之得:x=2000120%-90%y=780y=1800答:去年的总产值为2000万元,总支出1800万元,变式:若条件不变,求今年的总产值、总支出各是多少万元?简析:如果设今年的总产值为万元,总支出为万元,则让学生动手解这个方程组,体验这种解法的繁琐,再让学生探索,受上例的启发,应该设间接未知数,设去年的总产值勤x万元,总支出为y万元,计算方便。三、做一做医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含单位蛋白质和1单位铁质,每克乙原料含单位蛋白质和单位铁质,若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?解:设每餐需甲、乙两种原料各x、y克,则有下表:甲原料各x克乙原料各y克所配制营养品其中所含营养品单位单位+单位其中所含铁质x单位单位(x+单位根据题意,可得方程组+=35x+=40化简,得5x+7y=350①5x+2y=200②①-②,得5y=150y=30将y=30代入①,得x=28。所以每餐需要甲原料28克、乙原料30克。解此题需要注意以下两点:甲(乙)原料所含蛋白质(铁质)=甲(乙)原料的质量×每克所含蛋白质(铁质)的含量。甲原料所含蛋白质(铁质)+乙原料所含蛋白质(铁质)=营养品所含蛋白质(铁质。例2、甲、乙两相距6千米,两人同时出发,同向而行,甲3小时可追上乙;相向而行,1小时相遇,两人的平均速度各是多少?解:设甲的平均速度是每小时行x千米,乙的平均速度是每小时行y,根据题意,得:3x=3y+6x+y=6解这个方程组,得:x=4y=2答:平均每小时甲行4千米,乙行2千米。练一练1、一、二班共有100名学生,他们的体育达标率(达到标准的百分率)为81%,如果一班的学生的体育达标率为87.%,二班的达标率为75%,那么一、二班的学生数各是多少?解:可设班有x人,二班有y人,则有方程组x+y=6x=48%+75%=81(x+y)y=522、甲、乙两相距36千米两地相向而行,如果甲比乙先走2时,那么他们在乙出发时后相遇;如果乙比甲先走2时,那么他们在甲出发3时后相遇,甲、乙两人每时各走多少千米?解:设甲、乙两人每小时分别行走x千米、y千米。根据题意可得:+=36x=63x+5ky=36解此方程可得:y=4所以甲每小时走6千米,乙每小时走4千米。小结1、做应用题时应强调列表分析数量关系的重要性。设未知数有两种方法:(1)直接设元(2)间接设元,当直接设元较繁时应间接设元。作业P202习题。教后感:让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生的数学应用能力。正确地运用表格分析与“增收节支”相似一类问题的数量关系,会列二元一次方程组这类问题。§应用二元一次方程组---里程碑上的数【教学目标】【知识目标】1、用二元一次方程式组解决“里程碑上的数”这一有趣场景中的数字问题和行程问题2、归纳出用二元一次方程组解决实际问题的一般步骤。【能力目标】让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,让学生学会列方程组解决实际问题的一般步骤【情感目标】在本节课上让学生体验把复杂问题化为简单问题的同时,培养学生克服困难的意志和勇气,鼓励学生合作交流,培养学生的团队精神。【教学重点】用二元一次方程组刻画学问题和行程问题,初步体会列方程组解决实际问题的步骤。【教学难点】将实际问题转化成二元一次方程组的数学模型。【教学过程】想一想,忆一忆:解二元一次方程组的基本思路各基本方法是什么?(解二元一次方程组的基本思路是通过“消元”把“二元”化为“一元”,基本方法是代入法和加减法创设情景,引入新课小明爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一小时看到的里程碑上的数字情况如下:12∶00时,这是两位数,它的两个数字之和为7,13∶00时,十位与个位数字与12∶00时看到的正好颠倒了;14∶00时,比12∶00时看到的两位数中间多了个0,你能确定小明在12∶00时看到的里程碑上的数字吗?如果设小明在12∶00时看到的十位数字是x,个位数字是y,那么12∶00时小明看到的数可表示为根据两个数字和是7,可列出方程(10x+y;x+y=7)13∶00时小明看到的数可表示为12∶00~13∶00间摩托车行驶的路程是[10y+x;(10y+x)-(10x+y)]14∶00时小明看到的数可表示为13∶00~14∶00间摩托车行驶的路程是[10x+y;(100x+y)-(10x+y)]12∶00~13∶00与13∶00~14∶00两段时间内摩托车的行驶路程有什么关系?你能列出相应的方程吗?[答:因为都匀速行驶1小时,所以行驶路程相等,可列方程(100x+y)-(10x+y)=(10y+x)-(10x+y),根据以上分析,得方程组:x+y=7(100x+y)-(10x+y)=(10y+x)-(10x+y)解这个方程组得:x=1y=6因此,小明在12∶00时看到里程碑上数是16。同学们:你能从此题中得到何种启示?答:从中得到解数字问题常设十位数字为x,个位数字为y,这个两位数为10x+y。练一练两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。设较大的两位为x,较小的两位数为y。分析:问题1:在较大数的右边写上较小的数,所写的数可表示为[100x+y]问题2:在较大数的左边写上较小的数,所写的数可表示为[100y+x]解:设较大的两位数为x,较小的两位数为y。x+y=68(100x+y)-(100y+x)=2178化简,得:x+y=6899x-99y=2178即,x+y=68x-y=222解该方程组得x=45y=23做一做一个两伯数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?[解:设十位数为x,个位数为y,则10x+y-3(x+y)=2310x+y=5(x+y)+1解之得:x=5所以这个两位数是56y=6议一议列二元一次方程组解决实际问题的一般步骤是怎样的?1、“设”:弄清题意和题目中的数量关系,用字母表示题目中的两个未知数;2、“列”:找出能够表达应用题全部含义的两个等量关系,根据这两个相等关系列出需要的代数式,从而列出方程并组成方程组;3、“解”:解这个方程组,求出未知数的值;4、“验”:检验这个解是否正确,并看它是否符合题意;5、“答”:与设前后呼应,写出答案,包括单位名称;小结通过这节课的学习你有什么收获?(学生分小组讨论,并相互补充交流)本节课主要研究有关数字问题,解题的关键是设各位数字为未知数,用这些未知数表示相关数量,再列出方程。用二元一次方程组解应用题一般步骤有五步:设、列、解、验、答作业P205习题。教后感:1.在本节课上让学生体验把复杂问题化为简单问题的同时,培养学生克服困难的意志和勇气,鼓励学生合作交流,培养学生的团队精神。2.用二元一次方程式组解决“里程碑上的数”这一有趣场景中的数字问题和行程问题,让学生进一步经历和体验列方程组解决实际问题的过程,归纳出用二元一次方程组解决实际问题的一般步骤。体会方程(组)是刻画现实世界的有效数学模型
§二元一次方程与一次函数【教学目标】【知识目标】1、使学生初步理解二元一次方程与一次函数的关系2、能根据一次函数的图象求二元一次方程组的近似解.3、能利用二元一次方程组确定一次函数的表达式【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.【教学重点】1、二元一次方程和一次函数的关系2、能根据一次函数的图象求二元一次方程组的近似解【教学难点】方程和函数之间的对应关系即数形结合的意识和能力xyxyo1忆一忆同学们:什么叫二元一次方程的解?一次函数的图像是什么?如图,求一次函数的图像的解析式试一试问题:方程x+y=5的解有多少个?写出其中的几个解来[方程x+y=5的解有无数多个,如:x=-1x=0x=1x=2x=3y=6y=5y=4y=3y=2等在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数y=5-x的图像上吗?在一次函数y=5-x的图像上任取一点,它的坐标适合方程x+y=5吗?以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x的图像相同吗?做一做在同一直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?交点的坐标与方程组x+y=52x-y=1的解有什么关系?你能说明理由吗?[一次函数y=5-x和y=2x-1的图像的交点为(2,3),因此,x=2就是方程组y=3x+y=52x-y=1的解。]xyoxyo12x–y=2解:由x-2y=-2可得y=,同理,由2x–y=2可得y=2x–2,在同坐标系中作出一次函数y=的图像和y=2x–2的图像,观察图像,得两直线交于点(2,2),所以方程组x-2y=-22x–y=2的解是x=2y=3同学们你从本题中感悟到什么?原来我们解二元一次方程组除了代入法和加减法外还可以用图像法,那么用作图法来解方程组的步骤如下:把二元一次方程化成一次函数的形式在直角坐标系中画出两个一次函数的图像,并标出交点。交点坐标就是方程组的解。练一练1、用作图象的方法解方程组2x+y=42x-3y=12[由2x+y=4得y=-2x+4由2x-3y=12可得y=在同一直角坐标系中作出函数y=-2x+4和函数y=的图像,观察图像可得交点为(3,-2),所以方程组2x+y=4的解是x=32x-3y=12y=-22、在图中的两直线l1、l2的交点坐标可以看作的解。xyO24xyO246-4y=4-x试一试1、有一组数同时适合方程x+y=2和x+y=5吗?2、一次函数y=2–x,y=5-x的图像之间有何关系?你能从中“悟”出些什么吗?[没有一组数同时适合方程x+y=2和x+y=5;一次函数y=2–x,y=5-x的图像是两条平等的直线。我们可以得到:二元一次方程组无解<=>一次函数的图像平行(无交点)二元一次方程组有一解<=>一次函数的图像相交(有一个交点)二元一次方程组有无数个解<=>一次函数的图像重合(有无数个交点)小结二元一次方程的图像实际上就是一次函数的图像2、用图像法可以解二元一次方程组,原来我们还可以用几何的图像法来解代数问题。七、作业P205习题。教后感:1.通过学生的思考和操作、自主探索,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.使学生初步理解二元一次方程与一次函数的关系并能根据一次函数的图象求二元一次方程组的近似解2.通过学生的提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.§用二元一次方程组确定一次函数表达式【教学目标】1、使学生初步理解二元一次方程与一次函数的关系2、能根据一次函数的图象求二元一次方程组的近似解.3、能利用二元一次方程组确定一次函数的表达式【教学重点】1、二元一次方程和一次函数的关系2、能根据一次函数的图象求二元一次方程组的近似解【教学难点】方程和函数之间的对应关系即数形结合的意识和能力xyxyo1忆一忆同学们:什么叫二元一次方程的解?一次函数的图像是什么?如图,求一次函数的图像的解析式试一试问题:方程x+y=5的解有多少个?写出其中的几个解来[方程x+y=5的解有无数多个,如:等在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数y=5-x的图像上吗?在一次函数y=5-x的图像上任取一点,它的坐标适合方程x+y=5吗?以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x的图像相同吗?做一做在同一直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?交点的坐标与方程组的解有什么关系?你能说明理由吗?[一次函数y=5-x和y=2x-1的图像的交点为(2,3),因此,就是方程组的解。]xyo1xyo1解:由x-2y=-2可得y=,同理,由2x–y=2可得y=2x–2,在同坐标系中作出一次函数y=的图像和y=2x–2的图像,观察图像,得两直线交于点(2,2),所以方程组的解是同学们你从本题中感悟到什么?原来我们解二元一次方程组除了代入法和加减法外还可以用图像法,那么用作图法来解方程组的步骤如下:把二元一次方程化成一次函数的形式在直角坐标系中画出两个一次函数的图像,并标出交点。交点坐标就是方程组的解。练一练1、用作图象的方法解方程组2、在图中的两直线l1、l2的交点坐标可以看作的解。xyO2xyO246-4试一试1、有一组数同时适合方程x+y=2和x+y=5吗?2、一次函数y=2-x,y=5-x的图像之间有何关系?你能从中“悟”出些什么吗?[没有一组数同时适合方程x+y=2和x+y=5;一次函数y=2–x,y=5-x的图像是两条平等的直线。我们可以得到:二元一次方程组无解一次函数的图像平行(无交点)二元一次方程组有一解一次函数的图像相交(有一个交点)二元一次方程组有无数个解一次函数的图像重合(有无数个交点)小结二元一次方程的图像实际上就是一次函数的图像2、用图像法可以解二元一次方程组,原来我们还可以用几何的图像法来解代数问题。第六章数据的分析§平均数(一)教学目标:(一)知识目标:1、掌握算术平均数,加权平均数的概念。2、会求一组数据的算术平均数和加权平均数。(二)能力目标:1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。2、根据有关平均数的问题的解决,培养学生的合作意识和能力。(三)情感目标:1、通过小组合作的活动,培养学生的合作意识和能力。2、通过解决实际问题,让学生体会数学与生活的密切联系。教学重点:算术平均数,加权平均数的概念及计算。教学难点:加权平均数的概念及计算。教学方法:讨论与启发性。教学过程:一、引入新课:在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)二、讲授新课:1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92甲小组:X==91(分)甲小组做得对吗?有不同求法吗?乙小组:X=×××××××=91(分)乙小组的做法可以吗?还有不同求法吗?丙小组:先取一个数90做为基准a,则每个数分别与90的差为:5、9、-3、0、0、-4、……、2、2求出以上新的一组数的平均数X'=1所以原数组的平均数为X=X'+90=91想一想,丙小组的计算对吗?2、议一议:问:求平均数有哪几种方法?(1)X=(X1+X2+…+Xn)——算术平均数(2)X=(f1+f2+…fk=n)——利用加权求平均数(3)X=X'+a——利用基准求平均数问:以上几种求法各有什么特点呢?公式(1)适用于数据较小,且较分散。公式(2)适用于出现较多重复数据。公式(3)适用于数据较为接近于某一数据。3、练习:P213利用计算器(1)计算两支球队的平均身高,哪支球队队员的身材更为高大?(2)计算两支球队的平均年龄,哪支球队队员的年龄更为年轻?4、加权平均数:例1,某广告公司欲招聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新,综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?小结:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称为A的三项测试成绩的加权平均数。三、练一练:P216随堂练习四、小结:通过本节课的学习,你有哪些收获与体会?五、作业:书P220习题教后感:通过小组合作的活动,让学生体会数学与生活的密切联系,掌握算术平均数,加权平均数的概念,培养学生的合作意识和能力。§平均数(二)教学目标:(一)知识目标:1、会求加权平均数,并体会权的差异对结果的影响。2、理解算术平均数和加权平均数的联系与区别,并能利用它们解决一些现实问题。(二)能力目标:1、通过利用平均数解决实际问题,发展学生的数学应用能力。2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异的思维。(三)情感目标:通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。教学重点:加权平均数中权对结果的影响及与算术平均数的联系与区别。教学难点:探索算术平均数和加权平均数的联系和区别。教学方法:探讨教学教学过程:一、引入新课:1、什么是算术平均数?加权平均数?2、算术平均数与加权平均数有什么联系与区别吗?(引入)二、讲授新课:1、例题讲解:我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。一天,三个班级的各项卫生成绩分别如下:(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?与同伴进行交流。解:(1)一班的卫生成绩为:95×15%+90×10%+90×35%+85×40%=二班的卫生成绩为:90×15%+95×10%+85×35%+90×40%=三班的卫生成绩为:85×15%+90×10%95×35%+90×40%=91因此,三班的成绩最高。(2)分组讨论交流小结:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。2、议一议:小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?问:如何求今年的总支出比去年总支出的百分比呢?百分比=今年总支出—去年总支出去年总支出以下是小明和小亮的两种解法?谁做得对?小明:(9%+30%+6%)=15%小亮:=%由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小美的求法是对的。三、课堂练习:1、小明骑自行车的速度是15千米/时,步行的速度是5千米/时。(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?2、某市七月中旬各天的最高气温统计如下:求该市七月中旬的最高气温的平均数。四、小结1、加权平均数受什么因素的影响?权的差异对结果有影响。2、算术平均数与加权平均数有哪些联系与区别?五、作业:P223习题试一试教后感:过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。会求加权平均数,并体会权的差异对结果的影响。§中位数和众数一、教学目标:1.掌握中位数、众数等数据代表的概念,能根据所给信息求出相应的数据代表。2.合具体情境体会平均数、中位数和众数三者的差别,能初步选择恰当的数据代表对数据做出自己的判断。3.培养学生对统计数据从多角度进行全面的分析,从而避免机械的、片面的解释。二、教学重点和难点:重点:掌握中位数、众数等数据代表的概念。难点:选择恰当的数据代表对数据做出判断。三、教学过程:(一)创设情景,引出课题师:在当今信息时代,信息的重要性不言而喻,而人们又经常要求一些信息“用数据说话”,所以对数据做出恰当的分析是很重要的。今天我们一起来学习数据的代表以及如何选择恰当的数据代表对数据做出判断。我们一起来看下列一组数据:课件显示:问题1:数据误导:某次数学考试,婷婷得到78分。全班共30人,其他同学的成绩为1个100分,4个90分,22个80分,以及一个2分和一个10分。婷婷计算出全班的平均分为77分,所以婷婷告诉妈妈说,自己这次成绩在班上处于“中上水平”。师:婷婷有欺骗妈妈吗?【板书:平均数:对于n个数x1,x2,…,xn,我们把(x1+x2+…+xn)叫做这n个数的算术平均数(mean),简称平均数。】生:没有。师:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第三的分数说成处于班级的“中上水平”显然有投机取巧之嫌,大家思考:那么问题出在哪里呢?生:平均分受两个极端数据2分和10分的影响。师:你对此有何评价?生:…(复习了平均数的概念,同时说明有些数据利用平均数是反应不出问题的,为引入其他数据代表奠定基础。另外新课伊始,力求创设一种引人入胜的教学情景,挖掘出趣味因素,最大限度地吸引学生的课堂投入,符合学生的心理特征和认识规律。)师:类似的受平均数误导例子还是很多的。婷婷的爸爸的公司在一次招聘时就出现了如下的情景。问题2阿冲应聘先请一位同学给画面编一段话。然后提问:经理所说的公司的平均月薪2000元是否欺骗了阿冲?平均月薪2000元能客观反映公司员工的平均收入吗?若不能,你认为用哪个数据表示该公司员工收入的平均水平更合适?(二)交流对话,探究新知提出一个真实的问题,揭示学生认识上的矛盾,产生新的疑点,引起学生对“平均水平”的认知冲突,从而引入中位数和众数的概念.板书:中位数——把n个数据按大小、顺序排列,处于最中间位置的一个数据(或)叫做这组数据的中位数(median).众数——组数据中出现次数最多的那个数据,叫做这批数据的众数(mode).教师提问:大家对这两个概念还有什么疑问吗?生:如果数据有偶数个时,如何求中位数?师:取最中间两个数据的平均数。(用彩色粉笔板书补充)生:如果数据中两个数据出现次数相等,众数是哪一个?师:两个都是.(用彩色粉笔板书:众数可以有多个)生:如果数据中每个数据都只有出现一次呢?师:这组数据没有众数。(用彩色粉笔板书:众数也可能没有)生:一组数据总是重复一个数呢?师:这个数就是这组数据的众数。(用彩色粉笔板书补充)师:还有什么疑问吗?那么我们一起来做几个练习。练习1、数据1285395454的众数、中位数分别为()A.、5B.5、C.5、4D.5、5武汉市初中毕业(升学)考试数学试题答:B2、对于数据组3,3,2,3,6,3,10,3,6,3,2①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等。其中正确的结论有()。(A)1个;(B)2个;(C)3个(D)4个。(2000年天津市数学中考试题)答:A3、婷婷的妈妈是一位校鞋经销部的经理,为了解鞋子的销售情况,随机调查了9位学生的鞋子的尺码,由小到大是:20,21,21,22,22,22,22,23,23。对这组数据的分析中,婷婷的妈妈最感兴趣的数据代表是()(A)平均数(B)中位数(C)众数答:C(三)梳理概括,形成结构师:通过刚才的练习,我们基本掌握了数据三个代表的概念。(结合课件画面)在实际生活中针对同一份材料,同一组数据,当人们怀着不同的目的,选择不同的数据代表,从不同的角度进行分析时,看到的结果可能是截然不同的。婷婷同学利用自己的分数正好高出平均分的优势,采用了平均数作为数据代表来向她妈妈汇报,从而得出自己的分数还是处于班级中上水平的结论。婷婷爸爸也是利用自己公司的平均工资较高的优势,拿平均工资来吸引应聘者。作为信息的接受者,分析数据应该从多角度对统计数据作出较全面的分析,从而避免机械的,片面的解释.(四)应用新知,体验成功下面我们自己也试着把学过的知识应用到实际中。(课件显示例1)例1某班的教室里,三位同学正在为谁的数学成绩最好而争论,他们的五次数学成绩分别是:小玲:62,94,95,98,98.小明:62,62,98,99,100.小丽:40,62,85,99,99.他们都认为自己的成绩比另两位同学的好,请你结合各组数据的三个数据代表,谈谈你的观点。(教师把班级学生分为4大组,分别代表小玲、小明、小丽和裁判组。让学生充分利用本组数据中的优势数据代表进行讨论。教师适当点评)(六)变式练习,扩展新知师:刚才大家知识的应用得很好。(结合课件)议一议:平均数、中位数与众数都有哪些自己的特点?教师引导学生围绕以下内容展开:平均数:充分利用数据所提供信息,应用最为广泛,但…中位数:计算简单,受极端值影响较小,但…众数:当一组数据中有些数据多次重复出现时,众数往往是人们尤为关心的一个量.下面由我们自己去收集一组生活中的数据,然后再选择恰当的数据代表来说明本组数据的特征。全班每个学习小组分别测出一组和本组同学相关的生活数据(例如每分钟心跳的次数,每分钟呼吸的次数,同学眼镜近视的度数、中指的长度、身高等等),然后由各组选择一位代表上来发布本组同学的所得数据的平均数、中位数和众数,并选择其中一个数据代表来说明本组数据的特征。(教师发给每个小组一张《活动报告单》,深入到学生活动中,适当答疑)(教师视课堂具体的时间的情况选择是否讲解:假如你是一名厂长……)(五)反馈评价,提示作业平均数、中位数和众数各有所长,也各有其短。请你分别结合具体实例,说明平均数、中位数和众数各自的现实意义。1.用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因而其应用最为广泛,特别是在进行统计推断时有重要的作用;但计算时比较烦琐,并且容易受到极端数据的影响。2.用众数作为一组数据的代表,着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关,可靠性比较差,但众数不受极端数据的影响.当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。3.用中位数作为一组数据的代表,可靠性也比较差,但中位数也不受极端数据的影响,当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。总结:今天我们都学到哪些知识?1.根据不同的实际需要,确定用平均数、中位数还是众数反映数据的特征。2.平均数是最常用的指标。但在实际问题中,不能一味的使用平均数来确定数据的特征。补充练习:想一想:高一级学校录取新生主要是依据考生的总分,这与平均数、中位数和众数中的哪一个关系较大?答:和平均数的关系较大。计算平均数时用到了每一个数据,所以它对数据的变化比较敏感。平均数是最常用的指标。与中位数和众数相比,它有时能够获得更多的信息。思考题:随着汽车的日益普及,越来越多的城市发生了令人头疼的交通堵塞问题。你认为衡量某条交通主干道的路况用过往车辆一天车速的平均数合适吗?分析:人们上下班的时候是一天中最繁忙的两个时段,其他时段车流量明显减少,因此,如果用一天车速的平均数来衡量道路的路况,那么上下班交通堵塞的问题就给掩盖了。所以,较为合理的是按道路繁忙的不同程度,将一天分为几个时段分别计算平均车速。课后练习简答题,请说明理由:(1)河水的平均深度为2。5米,一个身高1。5米但不会游泳的人下水后肯定会淹死吗?(2)某学校录取新生的平均成绩是535分,如果某人的考分是531分,他肯定没有被这个学校录取吗?(3)5位学生在一次考试中的得分分别是:18,73,78,90,100考分为73的同学是在平均分之上还是之下?你认为他在5人中考分属“中上”水平吗?五、作业:P227习题§从统计图分析数据的集中趋势教学目标:(一)知识目标:1、根据给定信息,会利用计算器求一组数据的平均数。2、会进行数据的收集、加工与整理。(二)能力目标:1、初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。2、通过对计算器求平均数的探索活动,培养学生对探索能力。(三)情感目标:在使用计算器求平均数的探索活动中,鼓励学生重于探索,体验数学活动充满着探索与创造,同时通过互相间合作交流,让所有学生都得到发展,达到共同进步。教学重点:1、探索用计算器求平均数的方法。2、用计算器求平均数。3、从所给条形图中正确获取信息,并能进行加工与整理。教学难点:会进行数据的收集、加工与整理。教学方法:合作探索法教学过程:一、引入新课:在前几节课里我们分别学习了求算术平均数与加权平均数,在计算过程中,你们体会到有什么困难吗?(引入)二、讲授新课:1、探一探:(新6人为小组)(1)自己课桌的宽度,并将各组员的估计结果统计出来(精确厘米)。(2)用计算器求出估计结果的平均值,你是怎么做的?互相交流。计算器求一组数据平均数的一般步骤是:(以科学计算器为例)1、打开计算器,按键2进入统计状态。2、按键SHIFTAC/ON=清除机器中原有统计数据。3、输入数据4、显示结果5、退出大家的做法与以上步骤一致吗?量一量,与实际是否符合?2、例1,观察图8-1,利用计算器计算上海东方大鲨鱼篮球队队员的平均年龄。问:分别指出图中各年龄的人数?问:如何用计算器求出他们的平均年龄呢?三、课堂练习:1、P225随堂练习2、补充练习:(1)下面是某空调专卖店在今年七月份10天的销售数量:90,83,83,75,71,69,68,67,65,64求这组数据的平均数。(2)有人对展览馆七天中每天对馆参观的人数做了记录,情况如下:180,176,173,176,176,181,182,求这组数据的平均数。§数据的离散程度
学习目标:(1)
经历数据的收集、整理、描述和分析的过程;能根据数据处理的结果,做出合理的判断和预测。
(2)
增强应用数学的意识和综合运用所学知识解决问题的能力。
学习重点:熟悉数据的收集、整理、描述和分析,做出合理的判断和预测
学习难点:对数据的收集、整理、描述和分析
学习过程:
一、自主学习.阅读课本92页图10-1回答下面问题:
1.甲、乙两名运动员的训练成绩的平均数
,众数
中位数
2.观察图10-1,你发现那名运动员的成绩波动范围较大?谁的成绩比较稳定?
3.通常用
来描述一组数据的波动范围和偏离平均数的差异程度
二、合作交流
这两组数据的平均数、中位数、众数是否一致?仅关心数据的平均数、中位数、众数就能得到全面的结论吗?
三、巩固练习:1、课本93页练习
2、A组的2题
四、小结反思
处理数据时,我们不但要了解一组数据的平均水平,还需要了解这组数据的离散程度。
五、达标检测:
综合能力训练88页课堂练习第七章平行线的证明§为什么要证明一、学生知识状况分析学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.学生活动经验基础:在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.二、教学任务分析学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。因此,本课时的教学目标是:1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.三、教学过程分析本节课的教学思路为:验证活动(1)——猜想并验证活动(2)——猜想并验证活动(3)——经验总结——学生练习——课堂小结——巩固练习第一环节:验证活动(1)活动内容:某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n,n2-n+11的值都是质数.你认为呢?与同伴交流.参考答案:列表归纳为n01234567891011…n2-n+1111111317233141536783101121是否为质数是是是是是是是是是是是不是第二环节:猜想并验证活动(2)活动内容:如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?参考答案:设赤道周长为c,铁丝与地球赤道之间的间隙为:它们的间隙不仅能放进一个红枣,而且也能放进一个拳头.第三环节:猜想并验证活动(3)活动内容:如图,四边形ABCD四边的中点E、F、G、H,度量四边形EFGH的边和角,你能发现什么结论?改变四边形ABCD的形状,还能得到类似的结论吗?ABEABECDFGH∵E、F、G、H分别是四边形ABCD四边中点,∴EF∥AC,EF=AC;GH∥AC,GH=AC;∴EF平行且等于GH,∴四边形EFHG为平行四边形.第四环节:归纳与总结活动内容:①通过以上三个数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步,有根有据的推理.②举例说明“推理意识”与推理方法.第五环节:反馈练习活动内容:1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.答案:a与b的长度相等.第1小题图第2小题图2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.答案:线段b与线段d在同一直线上.3.当n为正整数时,n2+3n+1的值一定是质数吗?答案:经验证:当n为正整数时,n2+3n+1的值一定是质数.第六环节:课堂小结活动内容:今天这节课你学到了什么知识?参考答案:①要说明一个数学结论是否正确,无论验证多少个特殊的例子,也无法保证其正确性.②要确定一个数学结论的正确性,必须进行一步一步、有根有据的推理.第七环节巩固练习课本第217页习题第2,3题.§定义与命题(一)总体说明在了解推理的重要性以后,从本节课开始的连续两节课将向学生简单介绍定义、命题、真命题、假命题、公理、定理等一些术语和名词,为后面的学习打好基础,作好铺垫.一、学生知识状况分析学生技能基础:学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.活动经验基础:在前面的学习中,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.二、教学任务分析在几何中,有许许多多的定义、定理、公理等概念,还有一些真真假假的命题需要学生去辨别、去认识,本节课安排《定义与证明》旨在让学生对定义、定理、公理等概念有一个清楚的认识和了解,为此,本节课的教学目标是:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.三、教学过程分析本节课的设计思路为:情景引入——命题含义(情景引入)——课堂练习——课堂小结——课后练习第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.第四环节:课堂小结活动内容:①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.第五环节课后练习学习小组搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.四、教学反思本节课的设计具有如下特点:(1)采用了“小品表演”的形式引入新课,意在激起学生对数学的兴趣,让学生知道,数学不是枯燥无味的。并能从表演中不同的人对“黑客”这个名词的不同理解更好地悟出“定义”的含义。(2)在教学设计中,充分展示学生的语言表达能力,力图通过学生的自主学习来体现学生的主体地位,教师则通过对学生的启发、调整、激励来实现自己的主导地位。(3)“什么是定义?什么是命题?”,关于这方面的教学更象是文科的教学,但我们注重的不是让学生去死记硬背这些名词的解释,而应侧重于对这些名词的理解。§定义与命题(二)一、学生知识状况分析学生技能基础:学习本节之前,学生已经对命题的含义有所了解,并且已经学习过一些公理和定理,为公理化思想的培养作好了充分准备.活动经验基础:有了上一节的活动基础,学生对本节课主要采取学生分组交流、讨论、举例说明的学习方式有比较好的活动经验.二、教学任务分析在上一节课的学习中,学生对命题的概念有了清楚的认识,但学生对于命题的构造,什么是真命题,什么是假命题还不甚了解,本节课旨在让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念,为此,本节课的教学目标是:1.了解命题中的真命题、假命题、定理的含义;2.解命题的构成,能区分命题中的条件和结论。3.经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理.4.培养学生的语言表达能力。三、教学过程分析本节课的设计分为五个环节:回顾引入——探索命题的结构——思考探讨——读一读——课堂反思与小结.第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明.第二环节:探索命题的结构活动内容:①探讨命题的结构特征观察下列命题,发现它们的结构有什么共同特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电商独立站域名解析合同2025年
- 2025 小学六年级语文下册 交流平台 学习方法卡片制作课件
- 跨境电商2025年平台合作协议(进口)
- 口罩生产供应协议2025年质量条款
- 可穿戴设备数据共享协议2025年健康版
- 居家养老设备供应合同2025年执行版
- 镜像疗法协议(2025年中风偏瘫恢复)
- 隧道洞身开挖施工方案
- 社区社工面试题库及答案
- 社区护理学面试题及答案
- 线路交维管理办法
- 模具质量全流程管控体系
- 河南2024级高中会考数学试卷
- 美育视域下先秦儒家乐教思想对舞蹈教育的当代价值研究
- 运输企业隐患排查奖惩制度
- 网络传播法规(自考14339)复习题库(含答案)
- 房屋继承家庭协议书
- 晚会聘请导演协议书
- 电力电缆-电力电缆附件安装方法及步骤(电气设备运行维护)
- 2024中国人形机器人产业发展蓝皮书1
- 《医学美容技术》课件-实训:VISIA皮肤检测仪(理论)
评论
0/150
提交评论