




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黄埔区广附市级名校2024届中考二模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A. B. C. D.2.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°3.如果k<0,b>0,那么一次函数y=kx+b的图象经过()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限4.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30° B.60° C.50° D.40°5.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为(
)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4).A.1 B.2 C.3 D.46.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A. B. C.+1 D.37.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4 B.6 C.2 D.88.分式有意义,则x的取值范围是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣79.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×10510.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或111.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A.中位数 B.众数 C.平均数 D.方差12.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.14.正八边形的中心角为______度.15.分解因式:2a4﹣4a2+2=_____.16.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=▲.17.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.18.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.20.(6分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.21.(6分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.(1)①已知O为坐标原点,点,,则_________,_________;②点C在直线上,求出的最小值;(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.22.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.23.(8分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到0.1cm)24.(10分)如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的长.25.(10分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.26.(12分)某花卉基地种植了郁金香和玫瑰两种花卉共30亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香2.43玫瑰22.5(1)设种植郁金香x亩,两种花卉总收益为y万元,求y关于x的函数关系式.(收益=销售额﹣成本)(2)若计划投入的成本的总额不超过70万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?27.(12分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】
根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【题目详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【题目点拨】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.2、C【解题分析】
根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【题目详解】A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.【题目点拨】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.3、D【解题分析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【题目详解】∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一、二、四象限.
故选D.【题目点拨】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4、A【解题分析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.5、C【解题分析】∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,∵O为AC中点,∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正确;∵OG=a,BC=,∴OG≠BC,故(2)错误;∵S△AOE=a•=,SABCD=3a•=32,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C.【题目点拨】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.6、C【解题分析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则BC=m;∴AC+BC=(1+)m.答:树高为(1+)米.故选C.7、A【解题分析】
解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【题目点拨】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.8、A【解题分析】
直接利用分式有意义则分母不为零进而得出答案.【题目详解】解:分式有意义,则x﹣1≠0,解得:x≠1.故选:A.【题目点拨】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.9、A【解题分析】分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:1230000这个数用科学记数法可以表示为故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.10、D【解题分析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【题目详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【题目点拨】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.11、A【解题分析】
根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【题目详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.12、A【解题分析】
观察所给的几何体,根据三视图的定义即可解答.【题目详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【题目点拨】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、.【解题分析】
找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.【题目详解】∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,∴所画三角形时等腰三角形的概率是,故答案是:.【题目点拨】考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14、45°【解题分析】
运用正n边形的中心角的计算公式计算即可.【题目详解】解:由正n边形的中心角的计算公式可得其中心角为,故答案为45°.【题目点拨】本题考查了正n边形中心角的计算.15、1(a+1)1(a﹣1)1.【解题分析】
原式提取公因式,再利用完全平方公式分解即可.【题目详解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案为:1(a+1)1(a﹣1)1【题目点拨】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.16、【解题分析】垂径定理,勾股定理,锐角三角函数的定义。【分析】如图,设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CD⊥AB,根据垂径定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sin∠OCE的度数:。17、(2019,2)【解题分析】
分析点P的运动规律,找到循环次数即可.【题目详解】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【题目点拨】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.18、【解题分析】
用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.【题目详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率.故答案为.【题目点拨】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.【解题分析】
(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.【题目详解】(1)利用表格得出函数关系是一次函数关系:设y1=kx+b,∴解得:∴y1=20x+540,利用图象得出函数关系是一次函数关系:设y2=ax+c,∴解得:∴y2=10x+1.(2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,=﹣2(x﹣4)2+450,(1≤x≤9,且x取整数)∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),=(x﹣29)2,(10≤x≤12,且x取整数),∵10≤x≤12时,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.【题目点拨】此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.20、(1)50,108°(2)见解析;(3)600人;(4)不正确,见解析.【解题分析】
(1)由C组人数及其所占百分比可得总人数,用360°乘以A组人数所占比例可得;(2)根据百分比之和为1求得A组百分比补全图1,总人数乘以B的百分比求得其人数即可补全图2;(3)总人数乘以样本中A所占百分比可得;(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.【题目详解】(1)这次被抽查的学生共有25÷50%=50人,扇形统计图中,“A组”所对应的圆心度数为360°×=108°,故答案为50、108°;(2)图1中A对应的百分比为1-20%-50%=30%,图2中B类别人数为50×20%=5,补全图形如下:(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;(4)不正确,因为在样本中浪费粮食的人数所占比例不是20%,所以这种说法不正确.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.21、(1)①3,1;②最小值为3;(1)【解题分析】
(1)①根据点Q与点P之间的“直距”的定义计算即可;②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;(1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;【题目详解】解:(1)①如图1中,观察图象可知DAO=1+1=3,DBO=1,故答案为3,1.②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;(ii)当点C在坐标轴上时(,),易得为3;(ⅲ)当点C在第二象限时(),可得;(ⅳ)当点C在第四象限时(),可得;综上所述,当时,取得最小值为3;(1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.【题目点拨】本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.失分原因第(1)问(1)不能根据定义找出AO、BO的“直距”分属哪种情形;(1)不能找出点C在不同位置时,的取值情况,并找到的最小值第(1)问(1)不能根据定义正确找出点E与点F之间“直距”取最小值时点E、F的位置;(1)不能想到由相似求出GO的值22、(1)证明见解析;(2)【解题分析】试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.试题解析:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,∵AC=BC,OA=OE,即OC为△ABE的中位线.∴OC=BE,OC∥BE,∴BE=2OC=3.∵BE∥OP,∴△DBE∽△DPO,∴,即,解得BD=.23、37【解题分析】试题分析:过点作交于点.构造直角三角形,在中,计算出,在中,计算出.试题解析:如图所示:过点作交于点.
在中,
又∵在中,
答:的长度为24、(1)见解析;(2).【解题分析】分析:(1)由AB是直径可得BE⊥AC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长.作CH⊥AF于H,可证Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,而点E为AC的中点,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,设AE=x,则BE=2x,∴AB=x,即x=5,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行述职报告范文(13篇)
- 语文教师个人学期研修总结(3篇)
- 行政部上半年工作总结700字(4篇)
- 院感管理工作总结(7篇)
- 健康教育与公共卫生的融合发展路径研究
- 2025至2031年中国多媒体工作台行业投资前景及策略咨询研究报告
- 2025至2031年中国多功能纤维行业投资前景及策略咨询研究报告
- 2025开学第一课心得感悟100字(17篇)
- DB21-T2364-2019-西兰花采后处理技术规程-辽宁省
- 2025四川绵阳市绵州通科技有限责任公司招聘研发工程师岗位测试笔试参考题库附带答案详解
- 二年级上册道德与法治教学设计-4.2 做诚实的孩子 鲁人版
- 2025年统计学期末考试题库:综合案例分析题解题技巧试卷
- 2024年大学生就业力调研报告-智联招聘-202405
- 2025年车站值班员高级考试题库
- 广西2025年体育统考身体素质测试项目评分标准
- 品牌运营推广合同范本
- 档案补办申请书
- 【MOOC】《医学心理学》(北京大学)章节期末中国大学慕课答案
- 2023-2024学年湖南省长沙市长沙县八年级(下)月考数学试卷(6月份)(含答案)
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- 宁国市慈善协会筹备工作报告
评论
0/150
提交评论