2023-2024学年陕西西安地区八校高一数学第一学期期末达标检测模拟试题含解析_第1页
2023-2024学年陕西西安地区八校高一数学第一学期期末达标检测模拟试题含解析_第2页
2023-2024学年陕西西安地区八校高一数学第一学期期末达标检测模拟试题含解析_第3页
2023-2024学年陕西西安地区八校高一数学第一学期期末达标检测模拟试题含解析_第4页
2023-2024学年陕西西安地区八校高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年陕西西安地区八校高一数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,且α是第四象限角,那么的值是()A. B.-C.± D.2.命题p:,的否定是()A., B.,C., D.,3.已知,则的大小关系为()A. B.C. D.4.已知设alog30.2,b30.2,c0.23,则a,b,c的大小关系是()A.abc B.acbC.bac D.bca5.已知函数,,其中,若,,使得成立,则()A. B.C. D.6.下列运算中,正确的是()A. B.C. D.7.的分数指数幂表示为()A. B.C. D.都不对8.某同学用“五点法”画函数在一个周期内的简图时,列表如下:0xy0200则的解析式为()A. B.C D.9.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是2110.已知,,则()A. B.C. D.11.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是A. B.C. D.12.要想得到函数的图像,只需将函数的图象A.向左平移个单位,再向上平移1个单位 B.向右平移个单位,再向上平移1个单位C.向左平移个单位,再向下平移1个单位 D.向右平移个单位,再向上平移1个单位二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的最小值为______.14.若,则_________.15.已知,则的值是________,的值是________.16.写出一个同时具有下列三个性质的函数:___________.①为幂函数;②为偶函数;③在上单调递减.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.在中,角的对边分别为,的面积为,已知,,(1)求值;(2)判断的形状并求△的面积18.已知函数f(x)=ln(ex+1)+ax是偶函数,g(x)=f(lnx)(e=2.71828…)(Ⅰ)求实数a的值;(Ⅱ)判断并证明函数g(x)在区间(0,1)上的单调性19.已知函数,)函数关于对称.(1)求的解析式;(2)用五点法在下列直角坐标系中画出在上的图象;(3)写出的单调增区间及最小值,并写出取最小值时自变量的取值集合20.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)21.已知函数(1)若函数,且为偶函数,求实数的值;(2)若,,且的值域为,求的取值范围22.已知函数,其中(1)求函数的定义域;(2)若函数的最小值为,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由诱导公式对已知式子和所求式子进行化简即可求解.【详解】根据诱导公式:,所以,,故.故选:B【点睛】诱导公式的记忆方法:奇变偶不变,符号看象限.2、C【解析】根据特称命题的否定是全称命题即可求解.【详解】解:命题p:,的否定是:,,故选:C.3、B【解析】先对三个数化简,然后利用指数函数的单调性判断即可【详解】,,,因为在上为增函数,且,所以,所以,故选:B4、D【解析】由指数和对数函数单调性结合中间量0和1来比较a,b,c的大小关系即可有结果.【详解】因为,,所以故选:D5、B【解析】首先已知等式变形为,构造两个函数,,问题可转化为这两个函数的值域之间的包含关系【详解】∵,,∴,又,∴,∴由得,,设,,则,,,∴的值域是值域的子集∵,时,,显然,(否则0属于的值域,但)∴,∴(*)由上讨论知同号,时,(*)式可化为,∴,,当时,(*)式可化为,∴,无解综上:故选:B【点睛】本题考查函数恒成立问题,解题关键是掌握转化与化归思想.首先是分离两个变量,然后构造新函数,问题转化为两个函数值域之间的包含关系.其次通过已知关系确定函数值域的形式(或者参数的一个范围),在这个范围解不等式才能非常简单地求解6、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.7、B【解析】直接由根式化为分数指数幂即可【详解】解:故选:B【点睛】本题考查了根式与分数指数幂的互化,属基础题.8、D【解析】由表格中的五点,由正弦型函数的性质可得、、求参数,即可写出的解析式.【详解】由表中数据知:且,则,∴,即,又,可得.∴.故选:D.9、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.10、C【解析】求出集合,,直接进行交集运算即可.【详解】,,故选:C【点睛】本题考查集合的交集运算,指数函数的值域,属于基础题.11、C【解析】开机密码的可能有,,共15种可能,所以小敏输入一次密码能够成功开机的概率是,故选C【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式(其中n是基本事件的总数,m是事件A包含的基本事件的个数)得出的结果才是正确的12、B【解析】,因此把函数的图象向右平移个单位,再向上平移1个单位可得的图象,故选B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.14、##【解析】依题意利用诱导公式及二倍角公式计算可得;【详解】解:因为,所以.故答案为:.15、①.②.【解析】将化为可得值,通过两角和的正切公式可得的值.【详解】因为,所以;,故答案为:,.16、(或,,答案不唯一)【解析】结合幂函数的图象与性质可得【详解】由幂函数,当函数图象在一二象限时就满足题意,因此,或,等等故答案为:(或,,答案不唯一)三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)是等腰三角形,其面积为【解析】(1)由结合正弦面积公式及余弦定理得到,进而得到结果;(2)由结合内角和定理可得分两类讨论即可.试题解析:(1),由余弦定理得,(2)即或(ⅰ)当时,由第(1)问知,是等腰三角形,(ⅱ)当时,由第(1)问知,又,矛盾,舍.综上是等腰三角形,其面积为点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.18、(I)a=(II)答案见解析【解析】(I)由函数f(x)=ln(ex+1)+ax偶函数,可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函数单调性的定义确定函数的单调性即可.【详解】(I)∵函数f(x)=ln(ex+1)+ax是偶函数,∴f(-x)=f(x),∴ln(e-x+1)-ax=ln(ex+1)+ax,化为:(2a-1)x=0,x∈R,解得a=经过验证满足条件∴a=(II)由(I)可得:f(x)=ln(ex+1)∴g(x)=f(lnx)=ln(x+1)则函数g(x)在区间(0,1)上单调递增设,则,,,,,,∴函数g(x)在区间(0,1)上单调递增【点睛】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题19、(1),(2)详见解析(3)单调递增区间是,,最小值为,取得最小值的的集合.【解析】(1)根据函数的对称轴,列式,求;(2)利用“五点法”列表,画图;(3)根据三角函数的性质,即可求解.【小问1详解】因为函数关于直线对称,所以,,因为,所以,所以【小问2详解】首先根据“五点法”,列表如下:【小问3详解】令,解得:,,所以函数的单调递增区间是,,最小值为令,得,函数取得最小值的的集合.20、.【解析】设送报人到达的时间为X,小王离家去工作的时间为Y,(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,求出其面积,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}

求出其面积,根据几何概型的概率公式解之即可;试题解析:如图,设送报人到达的时间为,小王离家去工作的时间为.(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,面积为,事件表示小王离家前不能看到报纸,所构成的区域为即图中的阴影部分,面积为.这是一个几何概型,所以.答:小王离家前不能看到报纸的概率是0.125.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率21、(1)(2)【解析】(1)由题意得解析式,根据偶函数的定义,代入求解,即可得答案.(2)当时,可得解析式,根据值域为R,分别求和两种情

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论