2023-2024学年泸州市重点中学高一数学第一学期期末学业水平测试模拟试题含解析_第1页
2023-2024学年泸州市重点中学高一数学第一学期期末学业水平测试模拟试题含解析_第2页
2023-2024学年泸州市重点中学高一数学第一学期期末学业水平测试模拟试题含解析_第3页
2023-2024学年泸州市重点中学高一数学第一学期期末学业水平测试模拟试题含解析_第4页
2023-2024学年泸州市重点中学高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年泸州市重点中学高一数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设全集,集合,集合,则集合()A. B.C. D.2.已知圆方程为,过该圆内一点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是()A.4 B.C.6 D.3.将函数的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A. B.C. D.4.已知函数,则()A.5 B.C. D.5.已知函数,则,()A.4 B.3C. D.6.已知sinα+cosα=,则sin的值为()A.- B.C.- D.7.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.108.已知集合,,则()A. B.C. D.9.函数f(x)=lnx+3x-4的零点所在的区间为()A. B.C. D.10.已知全集,集合,集合,则为A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数的定义域是________________.12.已知且,则=______________13.已知是定义在R上的奇函数,当时,,则在R上的表达式是________14.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________15.设函数是定义在上的奇函数,且,则___________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知二次函数满足,且求的解析式;设,若存在实数a、b使得,求a的取值范围;若对任意,都有恒成立,求实数t的取值范围17.证明:(1);(2)18.如图为函数的一个周期内的图象.(1)求函数的解析式及单调递减区间;(2)当时,求的值域.19.(1)当,求的值;(2)设,求的值.20.甲、乙、丙三人打靶,他们的命中率分别为,若三人同时射击一个目标,甲、丙击中目标而乙没有击中目标的概率为,乙击中目标而丙没有击中目标的概率为.设事件A表示“甲击中目标”,事件B表示“乙击中目标”,事件C表示“丙击中目标”.已知A,B,C是相互独立事件.(1)求;(2)写出事件包含的所有互斥事件,并求事件发生的概率.21.某种商品在天内每件的销售价格(元)与时间(天)的函数关系为,该商品在天内日销售量(件)与时间(天)之间满足一次函数关系,具体数据如下表:第天(Ⅰ)根据表中提供的数据,求出日销售量关于时间的函数表达式;(Ⅱ)求该商品在这天中的第几天的日销售金额最大,最大值是多少?

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】利用补集和交集的定义可求得结果.【详解】由已知可得或,因此,,故选:D.2、C【解析】由圆的方程可知圆心为,半径,则过圆内一点的最长弦为直径,最短弦为该点与圆心连线的垂线段,进而求解即可【详解】由题,圆心为,半径,过圆内一点的最长弦为直径,故;当时,弦长最短,因为,所以,因为在直径上,所以,所以四边形ABCD的面积是,故选:C【点睛】本题考查过圆内一点弦长的最值问题,考查两点间距离公式的应用,考查数形结合思想3、A【解析】先根据三角函数图象变换规律写出所得函数的解析式,再求出其对称中心,确定选项【详解】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为令,得,所以函数的对称中心为观察选项只有A符合故选A【点睛】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高4、A【解析】分段函数求值,根据自变量的取值范围代相应的对应关系【详解】因为所以故选:A5、D【解析】根据分段函数解析式代入计算可得;【详解】解:因为,,所以,所以故选:D6、C【解析】应用辅助角公式可得,再应用诱导公式求目标三角函数的值.【详解】由题设,,而.故选:C7、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.8、B【解析】化简集合A,由交集定义直接计算可得结果.【详解】化简可得,又所以.故选:B.9、B【解析】根据函数零点的判定定理可得函数的零点所在的区间【详解】解:函数在其定义域上单调递增,(2),(1),(2)(1)根据函数零点的判定定理可得函数的零点所在的区间是,故选【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题10、A【解析】,所以,选A.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、,【解析】根据题意由于有意义,则可知,结合正弦函数的性质可知,函数定义域,,,故可知答案为,,,考点:三角函数性质点评:主要是考查了三角函数的性质的运用,属于基础题12、3【解析】先换元求得函数,然后然后代入即可求解.【详解】且,令,则,即,解得,故答案为:3.13、【解析】根据奇函数定义求出时的解析式,再写出上的解析式即可【详解】时,,,所以故答案为:【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键14、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.15、【解析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【点睛】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)或;(3).【解析】利用待定系数法求出二次函数的解析式;求出函数的值域,再由题意得出关于a的不等式,求出解集即可;由题意知对任意,都有,讨论t的取值,解不等式求出满足条件的t的取值范围【详解】解:设,因为,所以;;;;;解得:;;函数,若存在实数a、b使得,则,即,,解得或,即a的取值范围是或;由题意知,若对任意,都有恒成立,即,故有,由,;当时,在上为增函数,,解得,所以;当,即时,在区间上是单调减函数,,解得,所以;当,即时,,若,则,解得;若,则,解得,所以,应取;综上所述,实数t的取值范围是【点睛】本题考查了不等式恒成立问题,也考查了分类讨论思想与转化思想,属于难题17、(1)证明见解析(2)证明见解析【解析】(1)利用三角函数的和差公式,分别将两边化简后即可;(2)利用和2倍角公式构造出齐次式,再同时除以即可证明.【小问1详解】左边===右边===左边=右边,所以原等式得证.【小问2详解】故原式得证.18、(1),;(2).【解析】(1)由图可求出,令,即可求出单调递减区间;(2)由题可得,则可求得值域.【详解】(1)由题图,知,所以,所以.将点(-1,0)代入,得.因为,所以,所以.令,得.所以的单调递减区间为.(2)当时,,此时,则,即的值域为.【点睛】方法点睛:根据三角函数部分图象求解析式方法:(1)根据图象的最值可求出A;(2)求出函数的周期,利用求出;(3)取点代入函数可求得.19、(1);(2)【解析】(1)利用商数关系,化弦为切,即可得到结果;(2)利用诱导公式化简,代入即可得到结果.【详解】(1)因为,且,所以,原式=(2)∵,【点睛】本题考查三角函数的恒等变换,涉及到正余弦的齐次式(弦化切),诱导公式,属于中档题.20、(1)(2)互斥事件有:,【解析】(1)根据相互独立事件的乘法公式列方程即可求得.(2)直接写出事件包含的互斥事件,并利用对立事件的概率公式求事件发生的概率即可.【小问1详解】由题意知,A,B,C为相互独立事件,所以甲、丙击中目标而乙没有击中目标的概率乙击中目标而丙没有击中目标的概率,解得,.【小问2详解】事件包含的互斥事件有:,.21、(Ⅰ)(,,)(Ⅱ)第天的日销售金额最大,为元【解析】(Ⅰ)设,代入表中数据可求出,得解析式;(Ⅱ)日销售金额为,根据(1)及已知可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论