2024届甘肃省白银市会宁县四中高一数学第一学期期末达标检测试题含解析_第1页
2024届甘肃省白银市会宁县四中高一数学第一学期期末达标检测试题含解析_第2页
2024届甘肃省白银市会宁县四中高一数学第一学期期末达标检测试题含解析_第3页
2024届甘肃省白银市会宁县四中高一数学第一学期期末达标检测试题含解析_第4页
2024届甘肃省白银市会宁县四中高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省白银市会宁县四中高一数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若xlog34=1,则4x+4–x=A.1 B.2C. D.2.设函数,点,,在的图像上,且.对于,下列说法正确的是()①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④3.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.函数(且)与函数在同一个坐标系内的图象可能是A. B.C. D.5.命题,一元二次方程有实根,则()A.,一元二次方程没有实根B.,一元二次方程没有实根C.,一元二次方程有实根D.,一元二次方程有实根6.设函数f(x)=若,则实数的取值范围是()A.B.C.D.7.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.8.四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于()A.30° B.45°C.60° D.90°9.已知是空间中两直线,是空间中的一个平面,则下列命题正确的是()A.已知,若,则 B.已知,若,则C.已知,若,则 D.已知,若,则10.若,则等于A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB相交,则l的斜率k的取值范围是_____12.已知函数,则__________.13.方程的解在内,则的取值范围是___________.14.设,用表示不超过的最大整数.则称为高斯函数.例如:,,已知函数,则的值域为___________.15.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知向量,1若

,共线,求x的值;2若,求x的值;3当时,求与夹角的余弦值17.已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.18.已知函数f(x)=(m∈Z)为偶函数,且在(0,+∞)上为增函数(1)求m的值,并确定f(x)的解析式;(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由19.已知函数的图象关于原点对称,其中为常数(1)求的值;(2)当时,恒成立,求实数的取值范围20.已知函数,(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数的图象,求函数在区间上的值域21.已知函数,其中(1)求函数的定义域;(2)若函数的最小值为,求的值

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】条件可化为x=log43,运用对数恒等式,即可【详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D【点睛】本题考查对数性质的简单应用,属于基础题目2、A【解析】结合,得到,所以一定为钝角三角形,可判定①正确,②错误;根据两点间的距离公式和函数的变化率的不同,得到,可判定③正确,④不正确.【详解】由题意,函数为单调递增函数,因为点,,在的图像上,且,不妨设,可得,则,因为,可得,又由因为,,,,所以,所以所以,所以一定为钝角三角形,所以①正确,②错误;由两点间的距离公式,可得,根据指数函数和一次函数的变化率,可得点到的变化率小于点到点的变化率不相同,所以,所以不可能为等腰三角形,所以③正确,④不正确.故选:A.3、A【解析】利用充分条件和必要条件的定义判断即可【详解】,所以“”是“”的充分不必要条件故选:A4、C【解析】利用指数函数和二次函数的性质对各个选项一一进行判断可得答案.【详解】解:两个函数分别为指数函数和二次函数,其中二次函数的图象过点,故排除A,D;二次函数的对称轴为直线,当时,指数函数递减,,C符合题意;当时,指数函数递增,,B不合题意,故选C【点睛】本题通过对多个图象的选择考查指数函数、二次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.5、B【解析】根据全称命题的否定为特称命题可得出.【详解】因为全称命题的否定为特称命题,所以,一元二次方程没有实根.故选:B.6、C【解析】由于的范围不确定,故应分和两种情况求解.【详解】当时,,由得,所以,可得:,当时,,由得,所以,即,即,综上可知:或.故选:C【点睛】本题主要考查了分段函数,解不等式的关键是对的范围讨论,分情况解,属于中档题.7、D【解析】根据函数奇偶性的概念,逐项判断即可.【详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.8、B【解析】利用中位线定理可得GE∥SA,则∠GEF为异面直线EF与SA所成的角,判断三角形为等腰直角三角形即可.【详解】取AC中点G,连接EG,GF,FC设棱长为2,则CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF为异面直线EF与SA所成的角∵EF=,GE=1,GF=1∴△GEF为等腰直角三角形,故∠GEF=45°故选:B.【点睛】求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.9、D【解析】A.n和m的方向无法确定,不正确;B.要得到,需要n垂直于平面内两条相交直线,不正确;C.直线n有可能在平面内,不正确;D.平行于平面的垂线的直线与此平面垂直,正确.【详解】A.一条直线与一个平面平行,直线的方向无法确定,所以不一定正确;B.一条直线与平面内两条相交直线垂直,则直线垂直于平面,无法表示直线n垂直于平面内两条相交直线,所以不一定正确;C.直线n有可能在平面内,所以不一定正确;D.,则直线n与m的方向相同,,则,正确;故选D【点睛】本题考查了直线与平面的位置关系的判断,遇到不正确的命题画图找出反例即可.本题属于基础题.10、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、k≥或k≤-4【解析】算出直线PA、PB的斜率,并根据斜率变化的过程中求得斜率的取值范围详解】直线PA的斜率为,同理可得PB的斜率为直线过点且与AB相交直线的斜率取值范围是k≥或k≤-4故答案为k≥或k≤-412、2【解析】先求出,然后再求的值.【详解】由题意可得,所以,故答案为:13、【解析】先令,按照单调性求出函数的值域,写出的取值范围即可.【详解】令,显然该函数增函数,,值域为,故.故答案为:.14、【解析】对进行分类讨论,结合高斯函数的知识求得的值域.【详解】当为整数时,,当不是整数,且时,,当不是整数,且时,,所以的值域为.故答案为:15、【解析】根据二分法的步骤可求得结果.【详解】令,因为,,,所以下一个有根的区间是.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2);(3)【解析】(1)根据题意,由向量平行的坐标公式可得,解可得的值,即可得答案;(2)若,则有,利用数量积的坐标运算列方程,解得的值即可;(3)根据题意,由的值可得的坐标,由向量的坐标计算公式可得和的值,结合,计算可得答案【详解】根据题意,向量,,若,则有,解可得若,则有,又由向量,,则有,即,解可得.根据题意,若,则有,,【点睛】本题主要考查两个向量共线、垂直的性质,两个向量坐标形式的运算,两个向量夹角公式的应用,属于中档题17、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.18、(1)或,(2)存在实数,使在区间上的最大值为2【解析】(1)由条件幂函数,在上为增函数,得到解得2分又因为所以或3分又因为是偶函数当时,不满足为奇函数;当时,满足为偶函数;所以5分(2)令,由得:在上有定义,且在上为增函数.7分当时,因为所以8分当时,此种情况不存在,9分综上,存在实数,使在区间上的最大值为210分考点:函数的基本性质运用点评:解决该试题的关键是能理解函数的奇偶性和单调性的运用,能理解复合函数的性质得到最值,属于基础题19、(1)(2)【解析】(1)函数的图象关于原点对称,所以为奇函数,有,代入即可得出的值;(2)时,恒成立转化为即,令,求在的最大值即可.【小问1详解】函数的图象关于原点对称,则函数为奇函数,有,即,解得,当时,不满足题意,所以;【小问2详解】由,得,即,令,易知在上单调递减,则的最大值为.又因为当时,恒成立,即在恒成立,所以.20、(1);(2)【解析】(1)根据正弦函数的周期性和单调性即可得出答案;(2)根据周期变换和平移变换求出函数,再根据余弦函数的性质即可得出答案.【小问1详解】解:由函数,则函数f(x)的最小正周期,令,解得,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论