




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省哈尔滨市第九中学高一数学第一学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知关于的方程的两个实数根分别是、,若,则的取值范围为()A. B.C. D.2.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.3.已知全集,集合1,2,3,,,则A.1, B.C. D.3,4.当时,在同一坐标系中,函数与的图像是()A. B.C. D.5.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件6.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.7.设,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.在下列四组函数中,与表示同一函数的是()A.,B.,C.,D.,9.下列各组函数与的图象相同的是()A. B.C. D.10.已知“”是“”的充分不必要条件,则k的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由12.求过(2,3)点,且与(x-3)2+y2=1相切的直线方程为_____13.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.14.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.15.表示一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5h后追上了骑自行车者;④骑摩托车者在出发1.5h后与骑自行车者速度一样其中,正确信息的序号是________16.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某乡镇为打造成“生态农业特色乡镇”,决定种植某种水果,该水果单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,单株成本投入(含施肥、人工等)为元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?18.已知函数=(1)判断的奇偶性;(2)求在的值域19.已知函数.(1)若且的最小值为,求不等式的解集;(2)若当时,不等式恒成立,求实数的取值范围.20.已知函数.(1)求函数的单调区间;(2)若函数在有且仅有两个零点,求实数取值范围.21.已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用韦达定理结合对数的运算性质可求得的值,再由可求得实数的取值范围.【详解】由题意,知,因为,所以.又有两个实根、,所以,解得.故选:D.2、C【解析】易知函数在R上递增,由求解.【详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C3、C【解析】可求出集合B,然后进行交集的运算,即可求解,得到答案【详解】由题意,可得集合,又由,所以故选C【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合B,熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于,所以为上的递减函数,且过;为上的单调递减函数,且过,故只有D选项符合.故选:D.【点睛】本小题主要考查指数型函数、对数型函数单调性判断,考查函数图像的识别,属于基础题.5、A【解析】根据充分、必要条件的定义证明即可.【详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.6、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.7、A【解析】解不等式,再判断不等式解集的包含关系即可.【详解】由得,由得,故“”是“”的充分不必要条件.故选:A.8、B【解析】根据题意,先看函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.【详解】对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,但是解析式不一样,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选:B.9、B【解析】根据相等函数的定义即可得出结果.【详解】若函数与的图象相同则与表示同一个函数,则与的定义域和解析式相同.A:的定义域为R,的定义域为,故排除A;B:,与的定义域、解析式相同,故B正确;C:的定义域为R,的定义域为,故排除C;D:与的解析式不相同,故排除D.故选:B10、C【解析】根据“”是“”的充分不必要条件,可知是解集的真子集,然后根据真子集关系求解出的取值范围.【详解】因为,所以或,所以解集为,又因为“”是“”的充分不必要条件,所以是的真子集,所以,故选:C.【点睛】结论点睛:一般可根据如下规则判断充分、必要条件:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分也不必要条件,则对应集合与对应集合互不包含.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)存在;(或)【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数,则函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意②当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.12、或【解析】当直线没有斜率时,直线的方程为x=2,满足题意,所以此时直线的方程为x=2.当直线存在斜率时,设直线的方程为所以故直线的方程为或.故填或.13、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12014、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:15、①②③【解析】看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误故答案为①②③.点睛:研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法16、【解析】根据题设条件可以判断球心的位置,进而求解【详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)4千克,505元.【解析】(1)用销售额减去成本投入得出利润的解析式;(2)判断的单调性,及利用基本不等式求出的最大值即可【详解】解:(1)由题意得:,(2)由(1)中得(i)当时,;(ii)当时,当且仅当时,即时等号成立.因为,所以当时,,所以当施用肥料为4千克时,种植该果树获得的最大利润是505元.【点睛】方法点睛:该题考查的是有关函数的应用问题,解题方法如下:(1)根据题意,结合利润等于收入减去支出,得到函数解析式;(2)利用分段函数的最大值等于每段上的最大值中的较大者,结合求最值的方法得到结果.18、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【小问2详解】,当时,,故,即在的值域为19、(1);(2).【解析】(1)利用二次函数的最值可求得正数的值,再利用二次不等式的解法解不等式,即可得解;(2)令,根据题意可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:的图象是对称轴为,开口向上的抛物线,所以,,因为,解得,由得,即,得,因此,不等式的解集为.【小问2详解】解:由得,设函数,因为函数的图象是开口向上的抛物线,要使当时,不等式恒成立,即在上恒成立,则,可得,解得.20、(1)单调递增区间为,单调递减区间为(2)【解析】(1)先由三角恒等变换化简解析式,再由正弦函数的性质得出单调区间;(2)由的单调性结合零点的定义求出实数的取值范围.【小问1详解】由得故函数的单调递增区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 编剧劳动合同书
- 2025《陶瓷买卖合同》
- 2025购销合同范本格式
- 英语语法全攻略
- 英语口语进阶之路
- 英语成就未来
- 引领未来之路
- 音乐之旅:掌握乐器
- 2025公寓式酒店长期住宿协议合同
- 2025建筑材料运输合同协议书范本
- 河南省郑州市2024-2025学年高三上学期1月第一次质量预测地理试题2
- 船舶碰撞培训课件
- 项目启动会模板
- 2025-2030年可穿戴式睡眠监测仪行业深度调研及发展战略咨询报告
- 《圆明园的介绍》课件
- (2025)入团考试题库及答案
- 扫描电子显微镜(SEM)-介绍-原理-结构-应用
- 车厢定做合同范文大全
- 《地质灾害监测技术规范》
- 节能环保产品推广与销售代理协议
- 2024年长安汽车行测笔试题库
评论
0/150
提交评论