




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年浙江省嘉兴嘉善高级中学数学高一上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.“”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于A. B.C. D.23.边长为的正四面体的表面积是A. B.C. D.4.下列大小关系正确的是A. B.C. D.5.在中,,,若点满足,则()A. B.C. D.6.已知,,,则、、的大小关系为()A. B.C. D.7.已知是第三象限角,,则A. B.C. D.8.在空间中,直线平行于直线,直线与为异面直线,若,则异面直线与所成角的大小为()A. B.C. D.9.若,均为锐角,,,则()A. B.C. D.10.已知集合,a=3.则下列关系式成立的是A.aAB.aAC.{a}AD.{a}∈A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.12.如图,在棱长均相等的正四棱锥最终,为底面正方形的重心,分别为侧棱的中点,有下列结论:①平面;②平面平面;③;④直线与直线所成角的大小为其中正确结论的序号是______.(写出所有正确结论的序号)13.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.14.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②若函数的图象关于直线对称,则;③函数在上单调递减,在上单调递增;④当时,函数有四个零点其中正确的是___________(填上所有正确说法的序号)15.函数(a>0且a≠1)的图象恒过点定,若角终边经过点,则___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.化简求值:(1)已知都为锐角,,求的值;(2).17.已知函数,函数.(1)填空:函数的增区间为___________(2)若命题“”为真命题,求实数的取值范围;(3)是否存在实数,使函数在上的最大值为?如果存在,求出实数所有的值.如果不存在,说明理由.18.已知函数.(1)判断函数的奇偶性,并说明理由;(2)若实数满足,求的值.19.已知函数的最小正周期为(1)求图象的对称轴方程;(2)将的图象向左平移个单位长度后,得到函数的图象,求函数在上的值域20.函数是奇函数.(1)求的解析式;(2)当时,恒成立,求m的取值范围21.已知.(1)求的值(2)求的值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】解出不等式,进而根据不等式所对应集合间的关系即可得到答案.【详解】由,而是的真子集,所以“”是“”成立的必要不充分条件.故选:B.2、C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3、D【解析】∵边长为a的正四面体的表面为4个边长为a正三角形,∴表面积为:4×a=a2,故选D4、C【解析】根据题意,由于那么根据与0,1的大小关系比较可知结论为,选C.考点:指数函数与对数函数的值域点评:主要是利用指数函数和对数函数的性质来比较大小,属于基础题5、C【解析】由题可得,进一步化简可得.【详解】,,.故选:C.6、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.7、D【解析】利用条件以及同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值【详解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故选D【点睛】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题8、A【解析】根据异面直线所成角的定义与范围可得结果.【详解】因为且,故异面直线与所成角的大小为的补角,即为.故选:A.9、B【解析】由结合平方关系可解.【详解】因为为锐角,,所以,又,均为锐角,所以,所以,所以.故选:B10、C【解析】集合,,所以{a}A故选C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角12、①②③【解析】连接AC,易得PC∥OM,可判结论①证得平面PCD∥平面OMN,可判结论②正确由勾股数可得PC⊥PA,得到OM⊥PA,可判结论③正确根据线线平行先找到直线PD与直线MN所成的角为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,可判④错误【详解】如图,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确同理PD∥ON,所以平面PCD∥平面OMN,结论②正确由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论③正确由于M,N分别为侧棱PA,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,故④错误故答案为①②③【点睛】本题考查线面平行、面面平行,考查线线角,考查学生分析解决问题的能力,属于中档题13、【解析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题14、②③【解析】①:根据平面向量夹角的性质进行求解判断;②:利用函数的对称性,结合两角和(差)的正余弦公式进行求解判断即可;③:利用导数的性质、函数的奇偶性进行求解判断即可.④:根据对数函数的性质,结合零点的定义进行求解判断即可【详解】①:因为与的夹角为钝角,所以有且与不能反向共线,因此有,当与反向共线时,,所以有且,因此本说法不正确;②:因为函数的图象关于直线对称,所以有,即,于是有:,化简,得,因为,所以,因此本说法正确;③:因为,所以函数偶函数,,当时,单调递增,即在上单调递增,又因为该函数是偶函数,所以该在上单调递减,因此本说法正确;④:,问题转化为函数与函数的交点个数问题,如图所示:当时,,此时有四个交点,当时,,所以交点的个数不是四个,因此本说法不正确,故答案为:②③15、【解析】利用指数函数的性质得出定点,由任意角三角函数的定义得出三角函数值,结合诱导公式代入求值即可【详解】,且故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),(2)0.【解析】(1)先计算出,的值,然后根据角的配凑以及两角差的余弦公式求解出的值;(2)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式【小问1详解】因为,都为锐角,,,所以,,则【小问2详解】原式17、(1)(写出开区间亦可);(2);(3).【解析】(1)根据单调性的定义结合奇偶性可得解;(2)令,问题转化为“”为真命题,根据基本不等式找函数的最小值即可;(3)当时,,记,若函数在上的最大值为,分和,结合对数函数的单调性列式求解即可.【详解】(1)函数的增区间为(写出开区间亦可);理由:,为偶函数,任取,,所以的增区间为.(2),令,当且仅当时取“”,“”为真命题可转化为“”为真命题,因为,当且仅当时取“”,所以,所以;(3)由(1)可知,当时,,记,若函数在上的最大值为,则1)当,即时,在上最小值为1,因为图象的对称轴为,所以,解得,符合题意;2)当,即时,在上最大值为1,且恒成立,因为图象是开口向上的抛物线,在的最大值可能是或,若,则,不符合题意,若,则,此时对称轴,由,不合题意0.综上所述,只有符合条件.【点睛】本题主要考查了对数型、指数型的复合函数的单调性及最值问题。解题的关键是换元,将复杂的函数化为简单的函数,解决对数型的复合函数时要注意真数大于0这个隐含条件,属于难题.18、(1)偶函数,理由见详解;(2)或.【解析】(1)根据函数定义域,以及的关系,即可判断函数奇偶性;(2)根据的单调性以及对数运算,即可求得参数的值.【小问1详解】偶函数,理由如下:因为,其定义域为,关于原点对称;又,故是偶函数.【小问2详解】在单调递增,在单调递减,证明如下:设,故,因为,故,则,又,故,则,故,则故在单调递增,又为偶函数,故在单调递减;因为,又在单调递增,在单调递减,故或.19、(1);(2)【解析】(1)先由诱导公式及倍角公式得,再由周期求得,由正弦函数的对称性求对称轴方程即可;(2)先由图象平移求出,再求出,即可求出在上的值域【小问1详解】,则,解得,则,令,解得,故图象的对称轴方程为.【小问2详解】,,则,,则在上的值域为.20、(1);(2)【解析】(1)直接由奇函数的定义列方程求解即可;(2)由条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 猪肉产品包装设计创新创业项目商业计划书
- 茶叶AR互动体验馆创新创业项目商业计划书
- Unit5OntheroadUsinglanguage-ingasAttributive课件-高中英语
- 第一单元 走进化学世界
- 多人博弈面试题目及答案
- 菏泽见证取样考试试题及答案
- 广东省深圳市龙华区新华中学2025届化学九上期末考试试题含解析
- 和体育考试试题及答案
- 江苏省溧水县2025届九上数学期末质量检测试题含解析
- 天津城市职业学院《大学生心理健康教育与指导》2023-2024学年第一学期期末试卷
- 中小学生汉语考试(yct)一级语法大纲
- 高速公路路基施工作业标准化宣贯
- GB 19079.20-2013体育场所开放条件与技术要求第20部分:冰球场所
- 运输供应商年度评价表
- 化学品安全技术说明书MSDS(液氨)
- 住宿流水单免费模板
- 北京中考英语词汇表(1600词汇)
- BWD3K130干式变压器温控器说明书
- 公司引进战略投资者计划书课件
- 六西格玛黑带C阶段考试题
- HoloSens IVS3800智能视频存储介绍
评论
0/150
提交评论