




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1不等关系与不等式第一课时第三章不等式知识探究(一):用不等式表示不等关系思考1:限速40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h.怎样用不等式表示这里的不等关系?思考2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%,怎样用不等式组表示这里的不等关系?0<v≤40思考3:设点A与平面α的距离为d,B为平面α上的任意一点,则d与|AB|的大小关系怎样表示?d≤|AB|ABd思考4:某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入不低于20万元?思考5:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种.按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍.如何用不等式组表示上述所有不等关系?不等式的概念:思考:思考6:
知识探究(二):比较实数大小的基本原理思考1:实数可以比较大小,对于两个实数a,b,其大小关系有哪几种可能?a>b,a=b,a<b.思考2:任何一个实数都对应数轴上的一个点,那么大数与小数所对应的点的相对位置关系如何?大数对应的点位于小数对应的点的右边思考3:如果两个实数的差是正数,那么这两个实数的大小关系如何?反之成立吗?如何用数学语言描述这个原理?a-b>0a>b思考5:如果两个实数的差等于零,那么这两个实数的大小关系如何?反之成立吗?如何用数学语言描述这个原理?
a-b=0a=b思考4:如果两个实数的差是负数,那么这两个实数的大小关系如何?反之成立吗?如何用数学语言描述这个原理?a-b<0a<b例题讲解例1某用户计划购买单价分别为60元、70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒,用不等式组表示软件数x与磁盘数y应满足的条件.例2比较下列三组代数式的大小:(1)x2+3与3x;(2)x6+1与x4+x2;(3)第二课时3.1不等关系与不等式不等式的性质问题提出1.反映实数大小关系的基本原理是什么?a-b>0a>ba-b=0a=ba-b<0a<b2.用“差比法”比较两个代数式大小的一般步骤如何?作差→变形→判断符号探究(一):不等式的基本性质思考1:若甲的身材比乙高,则乙的身材比甲矮,反之亦然.从数学的观点分析,这里反映了一个不等式性质,你能用数学符号语言表述这个不等式性质吗?
a>bb<a(对称性)思考2:若甲的身材比乙高,乙的身材比丙高,那么甲的身材比丙高,这里反映出的不等式性质如何用数学符号语言表述?a>b,b>ca>c;a<b,b<ca<c(传递性)思考3:再有一个不争的事实:若甲的年薪比乙高,如果年终两人发同样多的奖金或捐赠同样多的善款,则甲的年薪仍然比乙高,这里反映出的不等式性质如何用数学符号语言表述?a>ba+c>b+c(可加性)思考4:还有一个不争的事实:若甲班的男生比乙班多,甲班的女生也比乙班多,则甲班的人数比乙班多.这里反映出的不等式性质如何用数学符号语言表述?a>b,c>da+c>b+d(同向可加性)思考5:如果a>b,c>0,那么ac与bc的大小关系如何?如果a>b,c<0,那么ac与bc的大小关系如何?为什么?思考6:如果a>b>0,c>d>0,那么ac与bd的大小关系如何?为什么?
a>b,c>0ac>bc;
a>b,c<0ac<bc
a>b>0,c>d>0ac>bd思考7:如果a>b>0,n∈N*,那么an与bn的大小关系如何?思考8:如果a>b>0,n∈N*,那么与的大小关系如何?
a>b>0>(n∈N*)
a>b>0an>bn(n∈N*)探究(二):不等式的拓展性质思考1:在等式中有移项法则,即a+b=ca=c-b,那么移项法则在不等式中成立吗?a+b>ca>c-b思考2:如果ai>bi(i=1,2,3,…,n),a1+a2+…+an与b1+b2+…+bn的大小关系如何?ai>bi(i=1,2,3,…,n)a1+a2+…+an>b1+b2+…+bn
思考3:如果ai>bi(i=1,2,3,…,n),那么a1·a2…an>b1·b2…bn吗?ai>bi>0(i=1,2,3,…,n)a1·a2…an>b1·b2…bn思考4:如果a>b,那么an与bn的大小关系确定吗?
a>b,n为正奇数an>bn思考5:如果a>b,c<d,那么a+c与b+d的大小关系确定吗?a-c与b-d的大小关系确定吗?a>b,c<da-c>b-d思考6:若a>b,ab>0,那么的大小关系如何?
a>b,ab>0理论迁移
例1已知a>b>0,c<0,求证:.
例2已知,x>y>0,求证:
.
例3若a<b<0,判断下列结论是否成立.(1)(2)(3)(4)ac2<bc2
例4给出三个不等式:①ab>0,②,③bc>ad,以其中任意两个作条件,余下一个做结论,可组成几个正确命题.第三课时3.1不等关系与不等式1.两个实数大小关系的比较原理知识梳理a-b>0a>b
a-b=0a=ba-b<0a<b2.不等式的基本性质(1)a>bb<a(对称性)(2)a>b,b>ca>c; a<b,b<ca<c(传递性)(3)a>ba+c>b+c(可加性)(4)a>b,c>da+c>b+d(5)a>b,c>0ac>bc;
a>b,c<0ac<bc(6)a>b>0,c>d>0ac>bd(7)a>b>0an>bn(n∈N*)(8)a>b>0>(n∈N*)应用举例例1已知a>b>1,求证:
例2已知b>a>c,a>0,求证:
例3已知a、b为正实数,求证:
例4比较下列各组代数式的大小:(1)a2+b2与2(a+b-1);(2)(a+b)(a3+b3)与(a2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园资源整合与教育成本控制方法探讨
- 教育技术对教师专业成长的影响
- 智能教育硬件在商业领域的应用与前景
- 二零二五年度绿色建筑产业园区房地产预售合同
- 二零二五版果园农产品品牌授权承包协议
- 二零二五年农业科技借款合同范本正规范本
- 2025版数据中心建设工程施工联合体协议样本
- 二零二五年度工业自动化设备采购及安装合同
- 二零二五年纺织品经销商代理销售合同样本
- 2025年新型城镇化项目单项工程施工合同协议书
- 2025年湖南省体育局直属事业单位招聘考试笔试试题(含答案)
- 汽车更换发动机合同协议
- 广东省省实、二中、执信、广雅、六中2024-2025学年高一下期末联考语文试题及答案
- 生物医药研发股东风险共担协议书
- 出口管制介绍课件
- 兰州噪音污染管理办法
- 2025 创伤救护四大技术(止血 包扎 固定 搬运)课件
- 艾梅乙信息安全管理制度
- 2025年北京市各区中考语文二模卷【议论文阅读题】汇集练附答案解析
- 2025年武汉市汉阳区社区干事岗位招聘考试笔试试题(含答案)
- 氢气安全使用技术规程
评论
0/150
提交评论