




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市产业园2024届数学高一上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知角的始边与轴非负半轴重合,终边过点,则()A.1 B.-1C. D.2.下列函数是偶函数的是A. B.C. D.3.在四棱锥中,平面,中,,,则三棱锥的外接球的表面积为A. B.C. D.4.已知,,则下列说法正确的是()A. B.C. D.5.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a6.已知角的终边经过点P,则()A. B.C. D.7.函数,其部分图象如图所示,则()A. B.C. D.8.设全集U=N*,集合A={1,2,5},B={2,4,6},则图中的阴影部分表示的集合为()A. B.4,C. D.3,9.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点,那么的值是()A. B.C. D.10.不等式成立x的取值集合为()A. B.C. D.11.的值是()A. B.C. D.12.中国扇文化有着深厚的文化底蕴,小小的折扇传承千年的制扇工艺与书画艺术,折扇可以看作是从一个圆面中剪下的扇形制作而成,设折扇的面积为,圆面中剩余部分的面积为,当时,折扇的圆心角的弧度数为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.据资料统计,通过环境整治.某湖泊污染区域的面积与时间t(年)之间存在近似的指数函数关系,若近两年污染区域的面积由降至.则使污染区域的面积继续降至还需要_______年14.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.15.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)16.已知,写出一个满足条件的的值:______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设集合,,(1),求;(2)若“”是“”的充分条件,求的取值范围18.已知函数,(1)若,求在区间上的最小值;(2)若在区间上有最大值3,求实数的值.19.已知函数是二次函数,,(1)求的解析式;(2)解不等式20.已知函数.(1)判断函数的奇偶性,并说明理由;(2)若实数满足,求的值.21.计算:(1);(2)已知,求的值22.设函数且是定义在上的奇函数(1)求的值;(2)若,试判断函数的单调性不需证明,求出不等式的解集
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】利用三角函数的坐标定义求出,即得解.【详解】由题得.所以.故选:D【点睛】本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.2、C【解析】函数的定义域为所以函数为奇函数;函数是非奇非偶函数;函数的图象关于y轴对称,所以该函数是偶函数;函数的对称轴方程为x=−1,抛物线不关于y轴对称,所以该函数不是偶函数.故选C.3、B【解析】由题意,求长,即可求外接圆半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球的表面积.【详解】由题意中,,,则是等腰直角三角形,平面可得,,平面,,则的中点为球心设外接圆半径为,则,设球心到平面的距离为,则,由勾股定理得,则三棱锥的外接球的表面积故选:【点睛】本题考查三棱锥外接球表面积的求法,利用球的对称性确定球心到平面的距离,培养空间感知能力,中等题型.4、C【解析】根据已知条件逐个分析判断【详解】对于A,因为,所以A错误,对于B,因为,所以集合A不是集合B的子集,所以B错误,对于C,因为,,所以,所以C正确,对于D,因为,,所以,所以D错误,故选:C5、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.6、B【解析】根据三角函数的定义计算,即可求得答案.【详解】角终边过点,,,故选:B.7、C【解析】利用图象求出函数的解析式,即可求得的值.【详解】由图可知,,函数的最小正周期为,则,所以,,由图可得,因为函数在附近单调递增,故,则,,故,所以,,因此,.故选:C.8、C【解析】由集合,,结合图形即可写出阴影部分表示的集合【详解】解:根据条件及图形,即可得出阴影部分表示的集合为,故选.【点睛】考查列举法的定义,以及图表示集合的方法,属于基础题.9、A【解析】根据三角函数的定义计算可得结果.【详解】因为,,所以,所以.故选:A10、B【解析】先求出时,不等式的解集,然后根据周期性即可得答案.【详解】解:不等式,当时,由可得,又最小正周期为,所以不等式成立的x的取值集合为.故选:B.11、C【解析】根据诱导公式即可求出【详解】故选:C12、C【解析】设折扇的圆心角为,则圆面中剩余部分的圆心角为,根据扇形的面积公式计算可得;【详解】解:设折扇的圆心角为,则圆面中剩余部分的圆心角为,圆的半径为,依题意可得,解得;故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、2【解析】根据已知条件,利用近两年污染区域的面积由降至,求出指数函数关系的底数,再代入求得污染区域将至还需要的年数.【详解】设相隔为t年的两个年份湖泊污染区域的面积为和,则可设由题设知,,,,即,解得,假设需要x年能将至,即,,,解得所以使污染区域的面积继续降至还需要2年.故答案为:214、或(答案不唯一)【解析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【点睛】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.15、(1);(2)5年;(3)17年.【解析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年16、(答案不唯一)【解析】利用,可得,,计算即可得出结果.【详解】因为,所以,则,或,故答案为:(答案不唯一)三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)或【解析】(1)先求集合B的补集,再与集合A取交集;(2)把“”是“”的充分条件转化为集合A与B之间的关系再求解的取值范围【小问1详解】时,,又故【小问2详解】由题意知:“”是“”的充分条件,即当时,,,满足题意;当时,,欲满足则必须解之得综上得的取值范围为或18、(1);(2)或.【解析】(1)先求函数对称轴,再根据对称轴与定义区间位置关系确定最小值取法(2)根据对称轴与定义区间位置关系三种情况分类讨论最大值取法,再根据最大值为3,解方程求出实数的值试题解析:解:(1)若,则函数图像开口向下,对称轴为,所以函数在区间上是单调递增的,在区间上是单调递减的,有又,(2)对称轴为当时,函数在在区间上是单调递减的,则,即;当时,函数在区间上是单调递增的,在区间上是单调递减的,则,解得,不符合;当时,函数在区间上是单调递增的,则,解得;综上所述,或点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.19、(1)(2)【解析】(1)根据得对称轴为,再结合顶点可求解;(2)由(1)得,然后直接解不等式即可.【小问1详解】由,知此二次函数图象的对称轴为,又因为,所以是的顶点,所以设因,即所以得所以【小问2详解】因为所以化为,即或不等式的解集为20、(1)偶函数,理由见详解;(2)或.【解析】(1)根据函数定义域,以及的关系,即可判断函数奇偶性;(2)根据的单调性以及对数运算,即可求得参数的值.【小问1详解】偶函数,理由如下:因为,其定义域为,关于原点对称;又,故是偶函数.【小问2详解】在单调递增,在单调递减,证明如下:设,故,因为,故,则,又,故,则,故,则故在单调递增,又为偶函数,故在单调递减;因为,又在单调递增,在单调递减,故或.21、(1)20;(2)【解析】(1)利用指对数的运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单个工程合伙管理制度
- 厂区公共财物管理制度
- 工地施工卫生管理制度
- 公司职业健康管理制度
- 专家点评2024年公路工程试题及答案
- 县级动物疫苗管理制度
- 广东公司文件管理制度
- 健全完善机关管理制度
- 学校公务用车管理制度
- 公司涉外日常管理制度
- (三级)农产品食品检验员职业鉴定理论考试题库(浓缩400题)
- 车辆维修配件管理制度
- 北京第八十中学初一新生分班(摸底)数学模拟考试(含答案)【6套试卷】
- 《护理学基础》-15-标本采集
- 感情计算在办公环境中的应用
- 2024年四川教师招聘教育公共基础知识真题与答案
- 解读国有企业管理人员处分条例课件
- 2024消防维保投标文件模板
- HG∕T 3792-2014 交联型氟树脂涂料
- 2《装在套子里的人》公开课一等奖创新教学设计 统编版高中语文必修下册
- 门诊部职责及管理制度(3篇)
评论
0/150
提交评论