湖南省长沙市湖南师大附中2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第1页
湖南省长沙市湖南师大附中2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第2页
湖南省长沙市湖南师大附中2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第3页
湖南省长沙市湖南师大附中2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第4页
湖南省长沙市湖南师大附中2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市湖南师大附中2023-2024学年高一数学第一学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的部分图象大致是A. B.C. D.2.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.已知圆与直线交于,两点,过,分别作轴的垂线,且与轴分别交于,两点,若,则A.或1 B.7或C.或 D.7或14.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确5.若函数的定义域和值域都为R,则关于实数a的下列说法中正确的是A.或3 B.C.或 D.6.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.7.关于的方程的所有实数解的和为A.2 B.4C.6 D.88.若幂函数的图象经过点,则的值为()A. B.C. D.9.如图所示韦恩图中,若A={1,2,3,4,5},B={3,4,5,6,7},则阴影部分表示的集合是()A.2,3,4,5,6, B.2,3,4,C.4,5,6, D.2,6,10.幂函数f(x)的图象过点(4,2),那么f()的值为()A. B.64C.2 D.11.已知集合,那么A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)12.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知幂函数(是常数)的图象经过点,那么________14.(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′与平面A′BD所成的角为30°.(4)四面体A′-BCD的体积为.15.如图,在中,,以为圆心、为半径作圆弧交于点.若圆弧等分的面积,且弧度,则=________.16.___________,__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当x∈[-2,2]时,求f(x)的值域.18.在中,角的对边分别为,的面积为,已知,,(1)求值;(2)判断的形状并求△的面积19.已知向量,,,,函数,的最小正周期为(1)求的单调增区间;(2)方程;在上有且只有一个解,求实数n的取值范围;(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由20.已知不等式的解集为或.(1)求b和c的值;(2)求不等式的解集.21.已知角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边过点(1)求值(2)已知,求的值22.化简计算:(1)计算:;(2)化简:

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】判断f(x)的奇偶性,在(,π)上的单调性,再通过f()的值判断详解:f(﹣x)==﹣f(x),∴f(x)是奇函数,f(x)的图象关于原点对称,排除C;,排除A,当x>0时,f(x)=,f′(x)=,∴当x∈(,π)时,f′(x)>0,∴f(x)在(,π)上单调递增,排除D,故选B点睛:点睛:本题考查函数图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.2、A【解析】根据充分、必要条件的定义证明即可.【详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.3、A【解析】由题可得出,利用圆心到直线的距离可得,进而求得答案【详解】因为直线的倾斜角为,,所以,利用圆心到直线的距离可得,解得或.【点睛】本题考查直线与圆的位置关系,属于一般题4、D【解析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.5、B【解析】若函数的定义域和值域都为R,则.解得或3.当时,,满足题意;当时,,值域为{1},不满足题意.故选B.6、B【解析】求圆心角的弧度数,再由弧长公式求弧长.【详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.7、B【解析】本道题先构造函数,然后通过平移得到函数,结合图像,计算,即可【详解】先绘制出,分析该函数为偶函数,而相当于往右平移一个单位,得到函数图像为:发现交点A,B,C,D关于对称,故,故所有实数解的和为4,故选B【点睛】本道题考查了函数奇偶性判定法则和数形结合思想,绘制函数图像,即可8、C【解析】由已知可得,即可求得的值.【详解】由已知可得,解得.故选:C.9、D【解析】根据图象确定阴影部分的集合元素特点,利用集合的交集和并集进行求解即可【详解】阴影部分对应的集合为{x|x∈A∪B且x∉A∩B},∵A∪B={1,2,3,4,5,6,7},A∩B={3,4,5},∴阴影部分的集合为{1,2,6,7},故选D【点睛】本题主要考查集合的运算,根据Venn图表示集合关系是解决本题的关键10、A【解析】设出幂函数,求出幂函数代入即可求解.【详解】设幂函数为,且图象过点(4,2),解得,所以,,故选:A【点睛】本题考查幂函数,需掌握幂函数的定义,属于基础题.11、A【解析】利用数轴,取所有元素,得【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理12、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;【详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;故答案:14、(2)(4)【解析】详解】若A′C⊥BD,又BD⊥CD,则BD⊥平面A′CD,则BD⊥A′D,显然不可能,故(1)错误.因为BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正确.因为平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′与平面A′BD所成的角为∠CA′D,因为A′D=CD,所以∠CA′D=,故(3)错误.四面体A′-BCD的体积为V=S△BDA′·h=××1=,因为AB=AD=1,DB=,所以A′C⊥BD,综上(2)(4)成立.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.15、【解析】设扇形的半径为,则扇形的面积为,直角三角形中,,,面积为,由题意得,∴,∴,故答案为.点睛:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题;设出扇形的半径,求出扇形的面积,再在直角三角形中求出高,计算直角三角形的面积,由条件建立等式,解此等式求出与的关系,即可得出结论.16、①.##-0.5②.2【解析】根据诱导公式计算即可求出;根据对数运算性质可得【详解】由题意知,;故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)由最大值求出,由周期求出,由求出,进而求得的解析式;(2)由的范围求得的范围,从而得到的范围,进而求得的值域.【详解】(1)由图象可知,,,由可得,又,所以,所以.(2)当时,,所以,故的值域为.18、(1);(2)是等腰三角形,其面积为【解析】(1)由结合正弦面积公式及余弦定理得到,进而得到结果;(2)由结合内角和定理可得分两类讨论即可.试题解析:(1),由余弦定理得,(2)即或(ⅰ)当时,由第(1)问知,是等腰三角形,(ⅱ)当时,由第(1)问知,又,矛盾,舍.综上是等腰三角形,其面积为点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.19、(1),(2)或(3)存在,且m取值范围为【解析】(1)函数,的最小正周期为.可得,即可求解的单调增区间(2)根据x在上求解的值域,即可求解实数n的取值范围;(3)由题意,求解最小值,利用换元法求解的最小值,即可求解m的范围【详解】(1)函数f(x)•1=2sin2(ωx)cos(2ωx)﹣1=sin(2ωx)cos(2ωx)=2sin(2ωx)∵f(x)的最小正周期为π.ω>0∴,∴ω=1那么f(x)的解析式f(x)=2sin(2x)令2x,k∈Z得:x∴f(x)的单调增区间为[,],k∈Z(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一个解,转化为函数y=f(x)+1与函数y=2n只有一个交点∵x在[0,]上,∴(2x)那么函数y=f(x)+1=2sin(2x)+1的值域为[,3],结合图象可知函数y=f(x)+1与函数y=2n只有一个交点那么2n<2或2n=3,可得或n=(3)由(1)可知f(x)=2sin(2x)∴f(x2)min=﹣2实数m满足对任意x1∈[﹣1,1],都存在x2∈R,使得m()+1>f(x2)成立即m()+1>﹣2成立令ym()+1设t,那么()2+2=t2+2∵x1∈[﹣1,1],∴t∈[,],可得t2+mt+5>0在t∈[,]上成立令g(t)=t2+mt+5>0,其对称轴t∵t∈[,]上,∴①当时,即m≥3时,g(t)min=g(),解得;②当,即﹣3<m<3时,g(t)min=g()0,解得﹣3<m<3;③当,即m≤﹣3时,g(t)min=g()0,解得m≤﹣3;综上可得,存在m,可知m的取值范围是(,)【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.同时考查了二次函数的最值的讨论和转化思想的应用.属于难题20、(1);;(2)【解析】(1)利用二次不等式的解集与相应的二次方程的根的关系,判断出1,2是相应方程的两个根,利用韦达定理求出,的值(2)将,的值代入不等式,将不等式因式分解,求出二次不等式的解集【详解】解:(1)不等式的解集为或,2是方程的两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论