2023-2024学年江苏省兴化市顾庄区八年级数学第一学期期末教学质量检测试题含解析_第1页
2023-2024学年江苏省兴化市顾庄区八年级数学第一学期期末教学质量检测试题含解析_第2页
2023-2024学年江苏省兴化市顾庄区八年级数学第一学期期末教学质量检测试题含解析_第3页
2023-2024学年江苏省兴化市顾庄区八年级数学第一学期期末教学质量检测试题含解析_第4页
2023-2024学年江苏省兴化市顾庄区八年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省兴化市顾庄区八年级数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点P(-2,3)关于y轴的对称点的坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)2.下面是课本中“作一个角等于已知角”的尺规作图过程.已知:∠AOB.求作:一个角,使它等于∠AOB.作法:如图(1)作射线O'A';(2)以O为圆心,任意长为半径作弧,交OA于C,交OB于D;(3)以O'为圆心,OC为半径作弧C'E',交O'A'于C';(4)以C'为圆心,CD为半径作弧,交弧C'E'于D';(5)过点D'作射线O'B'.则∠A'O'B'就是所求作的角.请回答:该作图的依据是()A.SSS B.SAS C.ASA D.AAS3.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A. B.C. D.4.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm5.下列四组线段中,可以构成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.1,,36.如图,△ABC与△关于直线MN对称,P为MN上任意一点,下列说法不正确的是()A. B.MN垂直平分C.这两个三角形的面积相等 D.直线AB,的交点不一定在MN上7.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)8.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是()A. B. C.2 D.9.下列运算中,结果是a5的是()A.a2•a3 B.a10a2 C.(a2)3 D.(-a)510.已知是多项式的一个因式,则可为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知为中的平分线,为的外角的平分线,与交于点,若,则______.12.一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,则此正多边形是_____边形,共有_____条对角线.13.对于任意实数,规定的意义是=ad-bc.则当x2-3x+1=0时,=______.14.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,若OD=8,OP=10,则PE=_____.15.估计与0.1的大小关系是:_____0.1.(填“>”、“=”、“<”)16.如图,点在同一直线上,已知,要使,以“”需要补充的一个条件是________________(写出一个即可).17.如图,等边的边长为2,则点B的坐标为_____.18.若一个多边形内角和等于1260°,则该多边形边数是______.三、解答题(共66分)19.(10分)如图1,在边长为3的等边中,点从点出发沿射线方向运动,速度为1个单位/秒,同时点从点出发,以相同的速度沿射线方向运动,过点作交射线于点,连接交射线于点.(1)如图1,当时,求运动了多长时间?(2)如图1,当点在线段(不考虑端点)上运动时,是否始终有?请说明理由;(3)如图2,过点作,垂足为,当点在线段(不考虑端点)上时,的长始终等于的一半;如图3,当点运动到的延长线上时,的长是否发生变化?若改变,请说明理由;若不变,求出的长.20.(6分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出关于y轴对称的;(2)写出点的坐标(直接写答案);(3)在y轴上画出点P,使PB+PC最小.21.(6分)如图,在长方形中,分别是线段上的点,且四边形是长方形.(1)若点在线段上,且,求线段的长.(2)若是等腰三角形,求的长.22.(8分)(背景知识)研究平面直角坐标系,我们可以发现一条重要的规律:若平面直角坐标系上有两个不同的点、,则线段AB的中点坐标可以表示为(简单应用)如图1,直线AB与y轴交于点,与x轴交于点,过原点O的直线L将分成面积相等的两部分,请求出直线L的解析式;(探究升级)小明发现“若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点”如图2,在四边形ABCD中,对角线AC、BD相交于点O,试说明;(综合运用)如图3,在平面直角坐标系中,,,若OC恰好平分四边形OACB的面积,求点C的坐标.23.(8分)请在下列横线上注明理由.如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.证明:∵(已知),∴(______),∴(______),∵(已知),∴(______),∵点到和的距离相等(已知),∴是的角平分线(______),∴(角平分线的定义),∴(______),即平分(角平分线的定义),∴点到和的距离相等(______).24.(8分)计算和解方程:(1);(2);(3);(4).25.(10分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:______,______.该调查统计数据的中位数是______,众数是______.请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.26.(10分)勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:1234…………(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现,,之间的关系吗?(3)对于偶数,这个关系(填“成立”或“不成立”)吗?(4)你能用以上结论解决下题吗?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点P(−2,3)关于y轴的对称点的坐标为(2,3).故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、A【分析】根据作图可得DO=D′O′,CO=C′O′,CD=C′D′,再利用SSS判定△D′O′C′≌△DOC即可得出∠A'O'B'=∠AOB,由此即可解决问题.【详解】解:由题可得,DO=D′O′,CO=C′O′,CD=C′D′,

∵在△COD和△C′O′D′中,∴△D′O′C′≌△DOC(SSS),

∴∠A'O'B'=∠AOB故选:A【点睛】此题主要考查了基本作图---作一个角等于已知角,三角形全等的性质与判定,熟练掌握相关知识是解题的关键.3、B【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间-实际所用时间=2,列出方程即可.【详解】设原计划每天施工x米,则实际每天施工(x+50)米,

根据题意,可列方程:=2,

故选B.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是读懂题意,找出合适的等量关系,列出方程.4、D【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.5、B【分析】根据勾股定理逆定理进行分析.【详解】A.22+32≠42,不能构成直角三角形;B.32+42=52,可以构成直角三角形;C.42+52≠62,不能构成直角三角形;D.12+(2≠32,不能构成直角三角形.故选B【点睛】本题考核知识点:勾股定理逆定理.解题关键点:熟记勾股定理逆定理.6、D【分析】根据轴对称的性质逐项判断即可得.【详解】A、P到点A、点的距离相等正确,即,此项不符合题意;B、对称轴垂直平分任意一组对应点所连线段,因此MN垂直平分,此项不符合题意;C、由轴对称的性质得:这两个三角形的面积相等,此项不符合题意;D、直线AB,的交点一定在MN上,此项符合题意;故选:D.【点睛】本题考查了轴对称的性质,掌握轴对称的性质是解题的关键.7、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.8、B【分析】由直线解析式可知:该直线过定点(﹣1,0),画出图形,由图可知:在直线CD和直线CE之间,两侧格点相同,再根据E、D两点坐标求k的取值【详解】解:∵直线y=﹣k(x+1)过定点(﹣1,0),分布在直线y=﹣k(x+1)两侧的格点数相同,由正方形的对称性可知,直线y=﹣k(x+1)两侧的格点数相同,∴在直线CD和直线CE之间,两侧格点相同,(如图)∵E(﹣3,3),D(﹣3,4),∴﹣1<﹣k<﹣,则<k<1.故选B.【点睛】此题考查的是一次函数与图形问题,根据一次函数的图像与点的坐标的位置关系求k的取值是解决此题的关键.9、A【分析】根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方、及乘方的意义逐项计算即可.【详解】A.a2•a3=a5,故正确;B.a10a2=a8,故不正确;C.(a2)3=a6,故不正确;D.(-a)5=-a5,故不正确;故选A.【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘.10、D【分析】所求的式子的二次项系数是2,因式(的一次项系数是1,则另一个因式的一次项系数一定是2,利用待定系数法,就可以求出另一个因式.【详解】设多项式的另一个因式为:.则.

∴,,解得:,.故选:D.【点睛】本题主要考查的是因式分解的意义,确定多项式的另一个因式是解题的关键.二、填空题(每小题3分,共24分)11、56°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACE和∠DCE,再根据角平分线的定义可得∠ABC=2∠DBC,∠ACE=2∠DCE,然后整理即可得解.【详解】由三角形的外角性质得,∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,∵BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∴∠A+∠ABC=2(∠D+∠DBC),整理得,∠A=2∠D,∵∠D=28°,∴∠A=2×28°=56°故答案为:56°.【点睛】本题考查了角平分线与三角形的外角性质,熟练运用外角性质将角度转化是解题的关键.12、九1【分析】设多边形的一个外角为α,则与其相邻的内角等于3α+20°,根据内角与其相邻的外角的和是180度列出方程,求出α的值,再由多边形的外角和为360°,求出此多边形的边数为360°÷α;依据n边形的对角线条数为:n(n-3),即可得到结果.【详解】解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,

由题意,得(3α+20)+α=180°,

解得:α=40°.

即多边形的每个外角为40°.

又∵多边形的外角和为360°,

∴多边形的外角个数=.

∴多边形的边数为9;∵n边形的对角线条数为:n(n-3),

∴当n=9时,n(n-3)=×9×6=1;

故答案为:九;1.【点睛】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系以及多边形的对角线条数,运用方程求解比较简便.13、1【分析】根据题中的新定义得出算式(x+1)(x-1)-3x(x-2),化简后把x2-3x的值代入计算即可求解.【详解】解:根据题意得:(x+1)(x-1)-3x(x-2)

=x2-1-3x2+6x

=-2x2+6x-1

=-2(x2-3x)-1,∵x2-3x+1=0,∴x2-3x=-1,原式=-2×(-1)-1=1.故答案为1.【点睛】本题考查整式的混合运算-化简求值,解题的关键是弄清题中的新定义.14、6【分析】利用勾股定理列式求出PD,再根据角平分线上的点到角的两边距离相等可得PE=PD.【详解】∵OD=8,OP=10,PD⊥OA,∴由勾股定理得,PD===6,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=6.故答案为6【点睛】本题考查的知识点是角平分线的性质,解题的关键是熟练的掌握角平分线的性质.15、>【解析】∵.,∴,∴,故答案为>.16、等【分析】需要补充的一个条件是BE=CF,若BF=CE,可用AAS证明△ABF≌△DCE;若补充条件AF=DE,也可用AAS证明△ABF≌△DCE.【详解】解:要使△ABF≌△DCE,又∵∠A=∠D,∠B=∠C,添加BF=CE或AF=DE,可用AAS证明△ABF≌△DCE;故填空答案:等.【点睛】本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.17、.【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】解:如图,过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,在Rt△BDO中,由勾股定理得:.∴点B的坐标为:.故答案为:.【点睛】本题考查了等边三角形的性质,坐标与图形和勾股定理.能正确作出辅助线,构造Rt△BDO是解决此题的关键.18、1【解析】试题分析:这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.试题解析:根据题意,得(n-2)•180=1260,解得n=1.考点:多边形内角与外角.三、解答题(共66分)19、(1)运动了1秒;(2)始终有,证明见解析;(3)不变,.【分析】(1)设运动了秒,则,,,根据列方程求解即可;(2)先证明DE=CF,然后根据“ASA”证明,从而可证始终有;(3)根据DE//BC得出∠ADE=∠B=60°,然后再在利用等边三角形的性质得出,再证明,得到,根据可解.【详解】解:(1)设运动了秒,则,,,当时,∵,∴,∴,即,解得,∴运动了1秒.(2)∵,∴,∴是等边三角形,∴∵∴又∵∴,.在与中∴∴;(3)不变.理由:∵,∴,∴是等边三角形,∵,∴,在与中,∴,∴,∴,∴.【点睛】本题主要考查了等边三角形的性质,一元一次方程的应用,平行线的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.20、(1)图见解析;(2);(3)图见解析.【分析】(1)先根据轴对称的性质分别描出点,再顺次连接即可得;(2)根据点坐标关于y轴对称的变化规律即可得;(3)先根据轴对称的性质可得,再根据两点之间线段最短即可得.【详解】(1)先根据轴对称的性质分别描出点,再顺次连接即可得到,如图所示:(2)点坐标关于y轴对称的变化规律:横坐标变为相反数,纵坐标不变;(3)由轴对称的性质得:则由两点之间线段最短得:当三点共线时,取得最小值,最小值为如图,连接,与y轴的交点P即为所求.【点睛】本题考查了画轴对称图形、点坐标关于y轴对称的变化规律、两点之间线段最短,熟练掌握轴对称的性质是解题关键.21、(1);(2)或5或【分析】(1)根据四边形ABCD是长方形,可得DC=AB=6,根据长方形的性质和勾股定理可得AC的长,作于点,根据三角形的面积可求出DQ的长;(2)由(1)得AC的长,分三种情况进行讨论:①当时;②当时;③当时,计算即可得出AP的长.【详解】(1)长方形中,,如图,作于点,(2)要使是等腰三角形①当时,②当时,③当时,如(1)中图,于点,由(1)知,,综上,若是等腰三角形,或5或.【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的性质.解题的关键要注意分情况讨论.22、[简单应用][探究升级][综合运用]【分析】简单应用:先判断出直线L过线段AB的中点,再求出线段AB的中点,最后用待定系数法即可得出结论;探究升级:先判断出,进而判断出≌,即可得出结论;综合运用:借助“探究升级”的结论判断出直线OC过线段AB的中点,进而求出直线OC的解析式,最后将点C坐标代入即可得出结论.【详解】解:简单应用:直线L将分成面积相等的两部分,直线L必过相等AB的中点,设线段AB的中点为E,,,,,直线L过原点,设直线L的解析式为,,,直线L的解析式为;探究升级:如图2,过点A作于F,过点C作于G,,,,,,在和中,,≌,;综合运用:如图3,由探究升级知,若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点,恰好平分四边形OACB的面积,过四边形OACB的对角线OA的中点,连接AB,设线段AB的中点为H,,,,设直线OC的解析式为,,,,直线OC的解析式为,点在直线OC上,,,【点睛】此题是一次函数综合题,主要考查了待定系数法,三角形的中线的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.23、同位角相等,两直线平行;两直线平行,同位角相等;两直线平行,同位角相等;角的内部到角的两边距离相等的点在角的平分线上;等量代换;角平分线上的点到角的两边的距离相等.【分析】根据角平分线的性质及平行线的性质与判定即可解答.【详解】证明:∵∠PFD=∠C(已知),∴PF∥AC(同位角相等,两直线平行),∴∠DPF=∠DAC(两直线平行,同位角相等).∵PE∥AB(已知),∴∠EPD=∠BAD(两直线平行,同位角相等).∵点D到PE和PF的距离相等(已知),∴PD是∠EPF的角平分线(角的内部到角的两边距离相等的点在角的平分线上),∴∠EPD=∠FPD(角平分线的定义),∴∠BAD=∠DAC(等量代换),即AD平分∠BAC(角平分线的定义),∴点D到A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论