




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年重庆市巴南区八上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各式中,正确的是()A.3>2 B.a3•a2=a6 C.(b+2a)(2a-b)=b2-4a2 D.5m+2m=7m22.若等腰三角形的周长为,其中一边为,则该等腰三角形的底边长为()A. B.或 C.或 D.3.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上,当△ABC是直角三角形时,AC的值为()A.4 B.2 C.1 D.4或14.若a+b=5,则代数式(﹣a)÷()的值为()A.5 B.﹣5 C.﹣ D.5.若x2+6x+k是完全平方式,则k=()A.9 B.﹣9 C.±9 D.±36.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=27.如图,线段与交于点,且,则下面的结论中不正确的是()A. B.C. D.8.一次函数的图象经过点,则该函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.两个三角形只有以下元素对应相等,不能判定两个三角形全等的()A.两角和一边 B.两边及夹角 C.三个角 D.三条边10.ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2 D.a:b:c=3:4:6二、填空题(每小题3分,共24分)11.如图,正方形ODBC中,OB=,OA=OB,则数轴上点A表示的数是__________.12.分解因式:4a﹣a3=_____.13.依据流程图计算需要经历的路径是(只填写序号),输出的运算结果是.14.计算:=______15.若点B(m+4,m-1)在x轴上,则m=_____;16.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.17.如图,,交于,于,若,则等于_______18.分解因式:2a3﹣8a=________.三、解答题(共66分)19.(10分)某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A绕三棱柱侧面一周到顶点安装灯带,已知此三棱柱的高为4m,底面边长为1m,求灯带最短的长度.20.(6分)如图,已知长方形纸片ABCD中,AB=10,AD=8,点E在AD边上,将△ABE沿BE折叠后,点A正好落在CD边上的点F处.(1)求DF的长;(2)求△BEF的面积.21.(6分)补充下列证明,并在括号内填上推理依据.已知:如图,在中,平分交于点,交于点,且,求证:.证明:,().,.(),________________.平分,(),,,________________,.().22.(8分)(1)如图(a),平分,平分.①当时,求的度数.②猜想与有什么数量关系?并证明你的结论.(2)如图(b),平分外角,平分外角,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).23.(8分)已知,请化简后在–4≤x≤4范围内选一个你喜欢的整数值求出对应值.24.(8分)在开展“学雷锋社会实践”活动中,某校为了解全校1000名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成如图的条形统计图:(1)这50个样本数据的中位数是次,众数是次;(2)求这50个样本数据的平均数;(3)根据样本数据,估算该校1000名学生大约有多少人参加了4次实践活动.25.(10分)问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.26.(10分)如图,已知.(1)若,,求的度数;(2)若,,求的长.
参考答案一、选择题(每小题3分,共30分)1、A【分析】比较两个二次根式的大小可判别A,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B、C、D的正误.【详解】A、,,∵,∴,故该选项正确;B、•,故该选项错误;C、,故该选项错误;D、,故该选项错误;故选:A.【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.2、C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【点睛】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.3、D【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,即可求出AC的值.【详解】解:如图,当△ABC是直角三角形时,有△ABC1,△ABC2两种情况,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=AB=1;在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,故选:D.【点睛】本题考查解直角三角形,构造直角三角形,掌握直角三角形中30°的角所对的直角边等于斜边的一半是解题关键.4、B【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【详解】∵a+b=5,∴原式故选:B.【点睛】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.5、A【解析】试题分析:若x2+6x+k是完全平方式,则k是一次项系数6的一半的平方.解:∵x2+6x+k是完全平方式,∴(x+3)2=x2+6x+k,即x2+6x+1=x2+6x+k∴k=1.故选A.考点:完全平方式.6、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.7、B【分析】根据SSS可以证明△ABC≌△BAD,从而得到其对应角相等、对应边相等.【详解】解:A、根据SSS可以证明△ABC≌△BAD,故本选项正确;
B、根据条件不能得出OB,OC间的数量关系,故本选项错误;
C、根据全等三角形的对应角相等,得∠CAB=∠DBA,故本选项正确;
D、根据全等三角形的对应角相等,得∠C=∠D,故本选项正确.
故选:B.【点睛】此题综合考查了全等三角形的判定和性质,注意其中的对应关系.8、A【分析】根据题意,易得k﹤0,结合一次函数的性质,可得答案.【详解】解:∵一次函数的图象经过点,∴0=-k-2∴k=-2,∴k<0,b<0,
即函数图象经过第二,三,四象限,
故选A.【点睛】本题考查一次函数的性质,注意一次项系数与函数的增减性之间的关系.9、C【解析】判定两三角形全等,就必须有边的参与,因此C选项是错误的.A选项,运用的是全等三角形判定定理中的AAS或ASA,因此结论正确;B选项,运用的是全等三角形判定定理中的SAS,因此结论正确;D选项,运用的是全等三角形判定定理中的SSS,因此结论正确;故选C.10、D【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【详解】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2−b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.
故选:D.【点睛】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(每小题3分,共24分)11、【解析】∵OB=,∴OA=OB=,∵点A在数轴上原点的左边,∴点A表示的数是−,故答案为:−.12、a(2+a)(2﹣a).【分析】利用提取公因式和平方差公式进行因式分解即可解答.【详解】解:4a﹣a3=a(4﹣a2)=a(2+a)(2﹣a).故答案为a(2+a)(2﹣a).【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.13、②③,.【分析】根据化简分式的步骤:先把分式化成同分母分式,再把分母相减,分子不变,即可得出答案.【详解】解:∵==,∴依据流程图计算需要经历的路径是②③;输出的运算结果是;故答案为:②③;.【点睛】本题考查化简分式,利用到平方差公式,解题的关键是掌握化简分式的步骤.14、4xy【分析】根据同底数幂除法法则计算即可.【详解】=4x4-3y2-1=4xy.故答案为:4xy【点睛】本题考查同底数幂除法,同底数幂相除,底数不变,指数相减;熟练掌握运算法则是解题关键.15、1【分析】由题意直接根据x轴上的点的纵坐标为0列出方程求解即可.【详解】解:∵点B(m+4,m-1)在x轴上,∴m-1=0,∴m=1.故答案为:1.【点睛】本题考查点的坐标,熟记x轴上的点的纵坐标为0是解题的关键.16、1800【详解】多边形的外角和等于360°,则正多边形的边数是360°÷30°=12,所以正多边形的内角和为.17、1【解析】过点P做PE⊥OB,根据角平分线的性质可得PD=PE,利用平行线的性质求得∠BCP=10°,然后利用含10°直角三角形的性质求解.【详解】解:过点P做PE⊥OB∵,,PE⊥OB∴∠AOB=10°,PD=PE又∵∴∠PCE=∠AOB=10°在Rt△PCE中,∠PCE=10°,PC=6∴PE=∴PD=1故答案为:1.【点睛】本题考查角平分线的性质,平行线的性质,含10°直角三角形的性质,掌握相关性质定理,正确添加辅助线是解题关键.18、2a(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.三、解答题(共66分)19、5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,如图,在Rt△AA'B中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:(m).答:灯带的最短长度为5m.【点睛】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键.20、(1);(2)的面积为25【分析】(1)由翻折知:BF=AB=10,EF=EA,由矩形得BC=AD=8,由勾股定理算出CF=6,从而算出DF=4;(2)由翻折知:△BEF和△BEA全等,在中求,设EF=x,依据勾股定理列方程解出,而AB=10,求出直角△BEA的面积,即为所求.【详解】解:(1)由翻折知:BF=AB=10,EF=EA,由矩形得BC=AD=8,CD=AB=10,,∵在中,,BF=10,BC=8,∴∴DF=CD-CF=10-6=4,(2)设EF=EA=x,则DE=8-x,∵在中,,DE=8-x,DF=4,EF=x,∴42+(8-x)2=∴x=5.∴直角△BEA的面积为,又∵由翻折知:△BEF和△BEA全等,∴△BEF的面积为25.【点睛】本题考查矩形翻折问题中的勾股定理,明确在翻折过程中的变量和不变量是解题的关键,熟练掌握勾股定理是解题的基础.21、三角形内角和等于;等量代换;;角平分线的定义;;内错角相等,两直线平行.【分析】由已知条件,先求出∠ABC的度数,因为DB平分∠ABC,得∠CBD=∠BDE,即可得出结论.【详解】证明:,(三角形内角和等于).,.(等量代换),,平分,(角平分线的定义),,,,.(内错角相等,两直线平行).故答案为三角形内角和等于;等量代换;;角平分线的定义;;内错角相等,两直线平行.【点睛】本题主要考查平行线判定和性质的知识,熟知平行线的判定定理是解答此题的关键.22、(1)①120°;②;证明见解析;(2)不正确;【分析】(1)①根据角平分线的定义以及三角形的内角和定理计算即可;
②结论:∠D=90°+∠A.根据角平分线的定义以及三角形的内角和定理计算即可;(2)不正确.结论:∠D=90°-∠A.根据角平分线的定义以及三角形的内角和定理三角形的外角的性质计算即可.【详解】解:(1)①,,,,,;②结论:.理由:,,;(2)不正确.结论:.理由:,,,.【点睛】本题考查三角形内角和定理,三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、;当x=1时,原式=1.【分析】先计算括号内的部分,再将除法转化为乘法,得出结果,再【详解】解:原式====,∵–4≤x≤4且为整数,∴x=±4,±3,±2,±1,0,又根据题目和计算过程中x≠0,2,4,当x=1时,原式=1.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式化简的运算法则,同时注意x不能取的值.24、(1)3,4;(2)这组样本数据的平均数是3.3次;(3)该校学生共参加4次活动约为360人.【分析】(1)根据众数的定义和中位数的定义,即可求出众数与中位数.
(2)根据加权平均数的公式可以计算出平均数;
(3)利用样本估计总体的方法,用1000×百分比即可.【详解】解:(1)∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4次.∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,=3次,∴这组数据的中位数是3次;故答案为:3,4.(2)观察条形统计图,可知这组样本数据的平均数:=3.3次,则这组样本数据的平均数是3.3次.(3)1000×=360(人)∴该校学生共参加4次活动约为360人.【点睛】本题考查的是条形统计图,平均数,众数,中位数,以及样本估计总体.读懂统计图,从统计图中得到必要的信息,掌握众数、中位数的定义是解题的关键.25、(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;
(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;
(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)如图1,∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°,
∵点A,D,E在同一直线上,
∴∠ADC=120°,
∴∠BEC=120
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件测试方法选择的试题及答案
- 2025年C语言模拟试题及答案
- 二级C语言变长参数处理试题及答案
- 2024中考道德与法治小题狂做八上第三单元勇担社会责任
- 保洁托管合同协议书模板
- 职业设计中的Photoshop试题及答案
- 物业维修窗帘合同协议书
- 餐饮送餐合同协议书范本
- 软件测试面临的常见挑战试题及答案
- 软件生命周期管理中的测试实践试题及答案
- 2025年中国冷库用叉车数据监测研究报告
- 2025年高考第二次模拟考试物理(浙江卷)(参考答案)-20250416-113627
- 2025年化妆师职业技能考试试题及答案
- GA 1812.1-2024银行系统反恐怖防范要求第1部分:人民币发行库
- 2025中信建投证券股份限公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年山东省泰安市新泰市中考二模化学试题(原卷版+解析版)
- 2025年鸡蛋市场调查报告
- 2025年职业技能竞赛(计算机程序员赛项)参考试题(附答案)
- 湖北省武汉市2025届高中毕业生四月调研考试语文试卷及答案(武汉四调)
- 《陆上风电场工程概算定额》NBT 31010-2019
- 关于中国文化遗产北京故宫的资料
评论
0/150
提交评论