版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省恩施州利川市市级名校2024学年中考数学仿真试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从3、1、-2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是()A. B. C. D.2.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A. B. C. D.3.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°4.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)5.已知xa=2,xb=3,则x3a﹣2b等于()A. B.﹣1 C.17 D.726.如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A. B.C. D.7.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是()A. B. C. D.8.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.39.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.2210.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A. B. C. D.11.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.12.cos45°的值是(
)A.
B.
C.
D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若xay与3x2yb是同类项,则ab的值为_____.14.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.15.分解因式:2x3﹣4x2+2x=_____.16.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.17.计算2x3·x2的结果是_______.18.已知平面直角坐标系中的点A(2,﹣4)与点B关于原点中心对称,则点B的坐标为_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?20.(6分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若AD=23,AE=6,求EC的长.21.(6分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,AF=,求图中阴影部分的面积.22.(8分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)23.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由24.(10分)解不等式组:3x+3≥2x+72x+425.(10分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD;26.(12分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x=________时,y有最小值.由此,小强确定篱笆长至少为________米.27.(12分)观察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】解:画树状图得:∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率==.故选B.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.2、D【解题分析】
左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【题目详解】请在此输入详解!3、A【解题分析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.4、B【解题分析】
根据三视图的定义即可解答.【题目详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【题目点拨】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.5、A【解题分析】∵xa=2,xb=3,∴x3a−2b=(xa)3÷(xb)2=8÷9=,故选A.6、D【解题分析】解:(1)当0≤t≤2a时,∵,AP=x,∴;(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.7、C【解题分析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【题目详解】A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误,故选C.【题目点拨】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.8、C【解题分析】
过点C作,且CQ=CP,连接AQ,PQ,证明≌根据全等三角形的性质,得到根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.【题目详解】过点C作,且CQ=CP,连接AQ,PQ,在和中≌AP的最大值是5.故选:C.【题目点拨】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.9、B【解题分析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【题目详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【题目点拨】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.10、D【解题分析】
根据题意列出关系式,去括号合并即可得到结果.【题目详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图②中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故选择:D.【题目点拨】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.11、D【解题分析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别12、C【解题分析】
本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【题目详解】cos45°=.故选:C.【题目点拨】本题考查特殊角的三角函数值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】试题解析:∵xay与3x2yb是同类项,∴a=2,b=1,则ab=2.14、2【解题分析】
连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【题目详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=1,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值1.∴△BDM的周长的最小值为DB+AD=2+1=2.【题目点拨】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.15、2x(x-1)2【解题分析】2x3﹣4x2+2x=16、1【解题分析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.17、【解题分析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.故答案为:2x518、(﹣2,4)【解题分析】
根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【题目详解】解:∵点A(2,-4)与点B关于原点中心对称,
∴点B的坐标为:(-2,4).
故答案为:(-2,4).【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【解题分析】
(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【题目详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得,解得:44≤x≤46.w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.20、(1)证明见解析;(2)1.【解题分析】试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;(2)设⊙O的半径为r,根据勾股定理得62+r2=(r+23)2,解得r=23,根据平行线分线段成比例定理,由OE∥BC得AECE试题解析:(1)证明:取BD的中点0,连结OE,如图,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;(2)解:设⊙O的半径为r,则OA=OD+DA=r+23,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+23)2,解得r=23,∵OE∥BC,∴AECE=AO∴CE=1.考点:1、切线的判定;2、勾股定理21、(1)见解析;(2)【解题分析】
(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.【题目详解】(1)证明:连接OD、CD,如图,∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,∴AC为⊙O的切线,∵EF为⊙O的切线,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴点F是AC中点;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD为等边三角形,∴∠BOD=60°,∵EF为切线,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S阴影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.22、至少涨到每股6.1元时才能卖出.【解题分析】
根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.【题目详解】解:设涨到每股x元时卖出,根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,解这个不等式得x≥,即x≥6.1.答:至少涨到每股6.1元时才能卖出.【题目点拨】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.23、(1)w=-10x2+700x-10000;(2)即销售单价为35元时,该文具每天的销售利润最大;(3)A方案利润更高.【解题分析】
试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【题目详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高24、无解.【解题分析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.25、见解析【解题分析】
依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.【题目详解】证明:∵AF=FG,∴∠FAG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∵F是AD的中点,FG∥AE,∴H是ED的中点∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD.(AAS).【题目点拨】本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键.26、见解析【解题分析】
根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x═()2+4可得当x=2,y有最小值,则可求篱笆长.【题目详解】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x∵x()2+()2=()2+4,∴x4,∴2x1,∴当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米.故答案为:y=2x,2,1.【题目点拨】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式.27、(1)CE=BD,CE⊥BD.(2)(1)中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公共关系专员职业资格考试《媒体关系管理》备考题库及答案解析
- 2025年广告传播师《广告媒体策划与购买》备考题库及答案解析
- 商铺租赁合同续签补充协议2025年条款
- 清洁服务人员劳动合同2025
- 配送服务人员工作协议2025
- 剧院2025年演出经纪合同协议
- 2025年绩效结果强制分布与校准考试试题及答案
- 外汇合同补充协议范本
- 培训机构整合合同范本
- 垃圾厂倒垃圾合同范本
- 二构钢筋包工合同范本
- 医疗健康体检服务投标书标准范本
- 建筑公司安全生产责任制度模板
- 滴灌设备相关知识培训课件
- 医院培训课件:《中医护理文书书写规范》
- 2025-2026学年冀教版(2024)小学信息技术三年级上册(全册)教学设计(附目录P168)
- 城市燃气设施提升改造工程节能评估报告
- 2025团校入团积极分子100题题库(含答案)
- 餐饮服务连锁企业落实食品安全主体责任监督管理规定
- 2025-2030中国皮肤外用药市场竞品分析与产品定位报告
- 2025北京市大兴区人民法院临时辅助用工招聘6人备考考试题库附答案解析
评论
0/150
提交评论