2024届安徽省蚌埠市怀远县数学八上期末预测试题含解析_第1页
2024届安徽省蚌埠市怀远县数学八上期末预测试题含解析_第2页
2024届安徽省蚌埠市怀远县数学八上期末预测试题含解析_第3页
2024届安徽省蚌埠市怀远县数学八上期末预测试题含解析_第4页
2024届安徽省蚌埠市怀远县数学八上期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省蚌埠市怀远县数学八上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,∠AOB=150°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE⊥OA于点E.若OD=4,则PE的长为()A.2 B.2.5 C.3 D.42.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为().A. B.C. D.3.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cm C.5cm,6cm,12cm D.2cm,3cm,5cm4.下列条件中能作出唯一三角形的是()A.AB=4cm,BC=3cm,AC=5cmB.AB=2cm,BC=6cm,AC=4cmC.∠A=∠B=∠C=60°D.∠A=30°,∠B=60°,∠C=90°5.如图,长方形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过C.则长方形的一边CD的长度为()A.1 B. C. D.26.中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82分,82分,245分2,190分2.那么成绩较为整齐的是()A.甲班 B.乙班 C.两班一样整齐 D.无法确定7.如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=OD C.OC=OP D.∠CPO=∠DPO8.如图,长方体的长为,宽为,高为,点到点的距离为,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是()A.4 B.5 C. D.9.若一组数据2,0,3,4,6,x的众数为4,则这组数据中位数是()A.0 B.2 C.3 D.3.510.正方形的边长为,其面积记为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积为,…按此规律继续下去,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.若解关于x的分式方程=3会产生增根,则m=_____.12.因式分解:_________.13.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.14.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.15.如图,△中,,边的垂直平分线分别交、于点、,边的垂直平分线分别交、于点、,则△周长为____.16.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是_______个.17.如图,网格纸上每个小正方形的边长为1,点,点均在格点上,点为轴上任意一点,则=____________;周长的最小值为_______________.18.等腰三角形的一个内角是,则它的底角的度数为_________________.三、解答题(共66分)19.(10分)阅读材料:若,求,的值.解:∵,∴,∴,∴,,∴,.根据你的观察,探究下面的问题:(),则__________,__________.()已知,求的值.()已知的三边长、、都是正整数,且满足,求的周长.20.(6分)(问题原型)如图1,在等腰直角三形ABC中,∠ACB=90°,BC=1.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.(初步探究)如图2.在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积并说明理由.(简单应用)如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连续CD,求△BCD的面积(用含a的代数式表示).21.(6分)工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料(图中阴影部分)不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?22.(8分)先化简,再求值.,其中x=1.23.(8分)如图,点C在线段AF上,AB∥FD,AC=FD,AB=FC,CE平分∠BCD交BD于E.求证:(1)△ABC≌△FCD;(2)CE⊥BD.24.(8分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.25.(10分)已知:如图在四边形ABCD中,AB∥CD,AD∥BC,延长CD至点E,连接AE,若,求证:26.(10分)如图,在中,平分,于点,点是的中点.(1)如图1,的延长线与边相交于点,求证:;(2)如图2,中,,求线段的长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】分析:根据平行线的性质,可得∠PDO的度数,然后过O作OF⊥PD于F,根据平行线的推论和30°角所在的直角三角形的性质可求解.详解:∵PD∥OA,∠AOB=150°∴∠PDO+∠AOB=180°∴∠PDO=30°过O作OF⊥PD于F∵OD=4∴OF=×OD=2∵PE⊥OA∴FO=PE=2.故选A.点睛:此题主要考查了直角三角形的性质,关键是通过作辅助线,利用平行线的性质和推论求出FO=PE.2、B【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2018=504×4+2即可找出点A2018的坐标.【详解】解:当x=1时,y=2,

∴点A1的坐标为(1,2);

当y=-x=2时,x=-2,

∴点A2的坐标为(-2,2);

同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,

∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),

A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).

∵2018=504×4+2,

∴点A2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009).

故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.3、B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知

A、1+2=3,不能组成三角形;

B、2+3>4,能组成三角形;C、5+6<12,不能够组成三角形;

D、2+3=5,不能组成三角形.

故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4、A【解析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【详解】A.符合全等三角形的SSS,能作出唯一三角形,故该选项符合题意,B.AB+AC=BC,不符合三角形三边之间的关系,不能作出三角形;故该选项不符合题意,C.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,D.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,故选A.【点睛】此题主要考查由已知条件作三角形,应用了全等三角形的判定和三角形三边之间的关系.熟练掌握全等三角形的判定定理是解题关键.5、C【分析】本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.【详解】解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)∵点E是AD的中点,AE=1,AD=BC,∴EC=2,利用勾股定理可得.故选:C.【点睛】本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解,本题难度中等.6、B【分析】根据方差的意义知,方差越小,波动性越小,故成绩较为整齐的是乙班.【详解】由于乙的方差小于甲的方差,故成绩较为整齐的是乙班.故选B.【点睛】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、C【分析】已知OP平分∠BOA,PC⊥OA,PD⊥OB,根据角平分线的性质定理可得PC=PD,在Rt△ODP和Rt△OCP中,利用HL定理判定Rt△ODP≌Rt△OCP,根据全等三角形的性质可得OC=OD,∠CPO=∠DPO,由此即可得结论.【详解】∵OP平分∠BOA,PC⊥OA,PD⊥OB,∴PC=PD(选项A正确),在Rt△ODP和Rt△OCP中,∴Rt△ODP≌Rt△OCP,∴OC=OD,∠CPO=∠DPO(选项B、D正确),只有选项C无法证明其正确.故选C.【点睛】本题考查了角平分线的性质定理及全等三角形的判定与性质,证明Rt△ODP≌Rt△OCP是解决本题的关键.8、B【分析】求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B,根据两点之间线段最短,BD=1+2=3,AD=4,由勾股定理得:AB===1.故选B.【点睛】考查了轴对称−最短路线问题,将长方体展开,根据两点之间线段最短,运用勾股定理解答是关键.9、D【分析】众数为一组数据中出现次数最多的数,由此可确定x的值,再根据中位数是将这组数据按从小到大的顺序排列后最中间的一个数(奇数个数据)或最中间两个数的平均数(偶数个数据)确定这组数据的中位数即可.【详解】解:这组数据的众数是4,因此x=4,将这组数据从小到大排序后为0,2,3,4,4,6,处在最中间的两个数的平均数为,因此中位数是3.1.故选:D.【点睛】本题考查了中位数和众数,会求一组数据的中位数和众数是解题的关键.10、A【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分Sn的值,根据数的变化找出变化规律Sn=,依此规律即可得出结论.【详解】解:在图中标上字母E,如图所示.

∵正方形ABCD的边长为1,△CDE为等腰直角三角形,

∴DE2+CE2=CD2,DE=CE,

∴S2+S2=S1.

观察,发现规律:S1=12=1,S2=S1=,S3=S2=,S4=S3=,…,

∴Sn=.

当n=5时,S5==.故选A.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律Sn=,属于中档题,难度不大,解决该题型题目时,写出部分Sn的值,根据数值的变化找出变化规律是关键.二、填空题(每小题3分,共24分)11、1【分析】先去分母得整式方程,解整式方程得到,然后利用方程的增根只能为3得到,再解关于m的方程即可.【详解】解:去分母得,解得,因为分式方程会产生增根,而增根只能为3,所以,解得,即当时,分式方程会产生增根.故答案为:1.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.12、【分析】提取公因式a得,利用平方差公式分解因式得.【详解】解:,故答案为:.【点睛】本题考查了因式分解,掌握提公因式法和平方差公式是解题的关键.13、()2018【解析】首先根据△ABC是腰长为1的等腰直角三形,求出△ABC的斜边长是,然后根据以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,求出第2个等腰直角三角形的斜边长是多少;再根据以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,求出第3个等腰直角三角形的斜边长是多少,推出第2017个等腰直角三角形的斜边长是多少即可.【详解】解:∵△ABC是腰长为1的等腰直角三形,

∴△ABC的斜边长是,第2个等腰直角三角形的斜边长是:×=()2,第3个等腰直角三角形的斜边长是:()2×=()3,…,

∴第2012个等腰直角三角形的斜边长是()2018.故答案为()2018.【点睛】本题考查勾股定理和等腰三角形的特征和应用,解题关键是要熟练掌握勾股定理,注意观察总结出规律.14、【分析】由数轴先判断出被覆盖的无理数的范围,再确定出,,–的范围即可得出结论.【详解】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16,∴3<<4,∵4<5<9,∴2<<3,∵1<3<4,∴1<<2,∴–2<–<–1,∴被墨迹覆盖住的无理数是,故答案为.【点睛】此题主要实数与数轴,算术平方根的范围,确定出,,–的范围是解本题的关键.15、1.【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,

∴AE=BE,AG=GC,

∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=1.

故答案是:1.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.16、3【详解】设摆出的三角形的的三边有两边是x根,y根,则第三边是12-x-y根,根据三角形的三边关系定理得出:所以又因为x,y是整数,所以同时满足以上三式的x,y的值的是;2,5;3,4;3,5;4,4;4,5;5,5.则第三边对应的值是5,5,4,4,3,2;因而三边的值可能是:2,5,5或者3,4,5或者4,4,4共有三种情况,则能摆出的不同三角形的个数是3【点睛】本题属于对三角形三边关系的基本性质和大小的考查,需要考生对三角形三边关系熟练运用17、+【分析】根据勾股定理可计算出AC的长,再找出点A关于x轴对称点,利用两点之间线段最短得出△PAC周长最小值.【详解】解:如图,AC==,作点A关于x轴对称的点A1,再连接A1C,此时与x轴的交点即为点P,此时A1C的长即为AP+CP的最小值,A1C==,∴△PAC周长的最小值为:A1C+AC=+.故答案为:,+.【点睛】本题考查了作图-轴对称变换、最短路线问题,解决本题的关键是正确得出对应点位置.18、【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.三、解答题(共66分)19、(1)a=-3,b=1;(2)16(3)9【详解】()∵,∴,∴,∵,,∴,,,;()∵,∴,∴,∵,,∴,,,,∴,∴;()∵,∴,∴,∵,,∴,,,,∵,∴,∵,∴,∵、、为正整数,∴,∴周长=.20、【问题原型】3;【初步探究】△BCD的面积为a2;【简单应用】△BCD的面积为a2.【分析】问题原型:如图1中,△ABC≌△BDE,就有DE=BC=1.进而由三角形的面积公式得出结论;初步探究:如图2中,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a.进而由三角形的面积公式得出结论;简单运用:如图3中,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【详解】解:问题原型:如图1中,如图2中,过点D作BC的垂线,与BC的延长线交于点E,∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴BC=DE=1.∵S△BCDBC•DE,∴S△BCD=3.故答案为:3.初步探究:△BCD的面积为a2.理由:如图2中,过点D作BC的垂线,与BC的延长线交于点E.,∴∠BED=∠ACB=90°∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴BC=DE=a.∵S△BCDBC•DE,∴S△BCDa2;简单应用:如图3中,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,,∴∠AFB=∠E=90°,BFBCa,∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DEa.∵S△BCDBC•DE,∴S△BCD•a•aa2,∴△BCD的面积为a2.【点睛】本题考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,解答时证明三角形全等是关键.21、(1)仓库有甲种规格的纸板1000张,有乙种规格的纸板1600张;(2)2400个.【分析】(1)设仓库有甲种规格的纸板x张,则有乙种规格的纸板(2600-x)张,根据“每个盒子由3个长方形侧面和2个正三角形底面组成,裁剪出的侧面和底面恰好全部用完”,列出方程,即可求解;(2)由(1)求出裁得的长方形个数,进而即可得到答案.【详解】(1)设仓库有甲种规格的纸板x张,则有乙种规格的纸板(2600-x)张,根据题意得:4x+2(2600-x)=3(2600-x)×1.5,解得:x=1000,2600-x=1600(张),答:仓库有甲种规格的纸板1000张,有乙种规格的纸板1600张;(2)当x=1000时,4x+2(2600-x)=7200(个),7200÷3=2400(个),答:一共能生产2400个巧克力包装盒.【点睛】本题主要考查一元一次方程的实际应用,找出等量关系,列出一元一次方程,是解题的关键.22、,.【分析】先化简分式,然后将x的值代入计算.【详解】解:原式当x=1时,原式.【点睛】本题考查了分式的计算,掌握分式化简得方法再代入求值是解题的关键.23、(1)见解析;(2)见解析【分析】(1)根据SAS即可判定△ABC≌△FCD;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论