




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京东城二中学八上数学期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20 B.16 C.12 D.102.如图,点是内任意一点,且,点和点分别是射线和射线上的动点,当周长取最小值时,则的度数为()A.145° B.110° C.100° D.70°3.下列各点在函数图象上的是()A. B. C. D.4.在,,,中分式的个数有()A.2个 B.3个 C.4个 D.5个5.在一张长为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.46.已知实数,则的倒数为()A. B. C. D.7.下列实数中,无理数是()A. B.-0.3 C. D.8.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.229.若是一个完全平方式,则k的值为()A. B.18 C. D.10.如图,是的角平分线,,分别是和的高,连接交于.下列结论:①垂直平分;②垂直平分;③平分;④当为时,,其中不正确的结论的个数为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知点,直线轴,且则点的坐标为__________.12.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.13.如图,由两个直角三角形和三个正方形组成的图形,已知,其中阴影部分面积是_____________平方单位.14.已知一个正数的两个平方根分别为和,则的值为__________.15.华为手机上使用的芯片,,则用科学记数法表示为__________16.已知,,则________.17.关于x的分式方程无解,则m的值为_______.18.如果二元一次方程组的解是一个直角三角形的两条直角边,则这个直角三角形斜边上的高为_____.三、解答题(共66分)19.(10分)解方程.20.(6分)甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.其中,甲的折线图为虚线、乙的折线图为实线.甲、乙两人的数学成绩统计表第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70(1)a=,;(2)请完成图中表示乙成绩变化情况的折线;(3)S2甲=260,乙成绩的方差是,可看出的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,将被选中.21.(6分)某校为美化校园环境,安排甲、乙两个工程队独立完成面积为400m2的绿化区域.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校计划对面积为1800m2的区域进行绿化,每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?22.(8分)计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)223.(8分)从沈阳到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是千米,普通列车的行驶路程是高铁的行驶路程的倍.(1)求普通列车的行驶路程.(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短小时,求高铁的平均速度.24.(8分)(1)计算:;(2)已知:,求的值.25.(10分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D的距离相等.(1)市场P应修建在什么位置?(请用文字加以说明)(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).26.(10分)某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)___________,并写出该扇形所对圆心角的度数为___________,请补全条形统计图.(2)在这次抽样调查中,众数为___________,中位数为___________.
参考答案一、选择题(每小题3分,共30分)1、D【分析】连接CD,CM,由于△ABC是等腰三角形,点D是BA边的中点,故CD⊥BA,再根据三角形的面积公式求出CD的长,再再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,故CD的长为AM+MD的最小值,由此即可得出结论.【详解】解:连接CD,CM.∵△ABC是等腰三角形,点D是BA边的中点,∴CD⊥BA,∴S△ABC=BA•CD=×4×CD=16,解得CD=8,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,∴MA=MC,∵CD≤CM+MD,∴CD的长为AM+MD的最小值,∴△ADM的周长最短=(AM+MD)+AD=CD+BA=8+×4=8+2=1.故选:D.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.2、B【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【详解】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则
OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,∴∠P1OM=∠MOP,∠NOP=∠NOP2,
根据轴对称的性质,可得MP=P1M,PN=P2N,则
△PMN的周长的最小值=P1P2,
∴∠P1OP2=2∠AOB=70°,
∴等腰△OP1P2中,∠OP1P2+∠OP2P1=110°,
∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=110°,
故选:B.【点睛】本题考查了轴对称-最短路线问题,正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=110°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.3、A【分析】依据函数图像上点的坐标满足解析式可得答案.【详解】解:把代入解析式得:符合题意,而,,均不满足解析式,所以不符合题意.故选A.【点睛】本题考查的是图像上点的坐标满足解析式,反之,坐标满足解析式的点在函数图像上,掌握此知识是解题的关键.4、B【分析】由题意根据分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:,,,中分式有,,共计3个.故选:B.【点睛】本题主要考查分式的定义,解题的关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.5、B【解析】有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,如图2,此时AE=EF=5cm.故选B.6、A【分析】根据倒数的定义解答即可.【详解】a的倒数是.故选:A.【点睛】本题考查了实数的性质,乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.7、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、是有理数,故A错误;
B、-0.3是有理数,故B错误;
C、是无理数,故C正确;
D、=3,是有理数,故D错误;
故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8、B【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.9、C【分析】根据完全平方公式形式,这里首末两项是和9这两个数的平方,那么中间一项为加上或减去和9乘积的2倍.【详解】解:是一个完全平方式,首末两项是和9这两个数的平方,,解得.故选:C.【点睛】本题是完全平方公式的应用,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积得2倍的符号,有正负两种情况,避免漏解.10、A【分析】根据角平分线性质求出DE=DF,根据HL可证△AED≌△AFD,即可推出AE=AF,再逐个判断即可.【详解】解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD平分∠EDF;③正确;∵AE=AF,DE=DF,∴AD垂直平分EF,①正确;②错误,∵∠BAC=60°,∴∠DAE=30°,∴∴,∴AG=3DG,④正确.故选:A【点睛】本题考查了全等三角形的性质和判定,角平分线性质的应用,垂直平分线的判定,解直角三角形,能求出Rt△AED≌Rt△AFD是解此题的关键.二、填空题(每小题3分,共24分)11、【分析】由AB∥y轴可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的横坐标可能的情况.【详解】解:∵,AB∥y轴,
∴点B的横坐标为3,
∵AB=6,
∴点B的纵坐标为-2-6=-8或-2+6=4,
∴B点的坐标为(3,-8)或(3,4).
故答案为:(3,-8)或(3,4).【点睛】本题主要考查了坐标与图形的性质.理解①平行于y轴的直线上的点的横坐标相等;②一条直线上到一个定点为定长的点有2个是解决此题的关键.12、1800【详解】多边形的外角和等于360°,则正多边形的边数是360°÷30°=12,所以正多边形的内角和为.13、49【分析】先计算出BC的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90,,∴,∴阴影部分的面积=,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC的平方是解题的关键.14、1【分析】根据可列式,求解到的值,再代入即可得到最后答案.【详解】解:和为一个正数的平方根,解得故答案为:1.【点睛】本题考查了平方根的知识,要注意到正数的平方根有两个,一正一负,互为相反数.15、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定.16、1【分析】根据同底数幂乘法的逆用和幂的乘方的逆用计算即可.【详解】解:====1故答案为:1.【点睛】此题考查的是幂的运算性质,掌握同底数幂乘法的逆用和幂的乘方的逆用是解决此题的关键.17、1或6或【分析】方程两边都乘以,把方程化为整式方程,再分两种情况讨论即可得到结论.【详解】解:当时,显然方程无解,又原方程的增根为:当时,当时,综上当或或时,原方程无解.故答案为:1或6或.【点睛】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键.18、.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值,根据三角形的面积公式即可得出结论.【详解】解:,①×2+②×3,得13x=52,∴x=4,把x=4代入①,得8+3y=17,∴y=3,∴,∵3,4是一个直角三角形的两条直角边,∴斜边==5,∴这个直角三角形斜边上的高==,故答案为:.【点睛】本题考查的是解二元一次方程组,勾股定理的运用以及面积法求线段的长,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.三、解答题(共66分)19、无解【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘最简公分母,得解得经检验:不是原分式方程的根∴原分式方程无解.【点睛】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.20、(1)a=40,=60;(2)见解析;(3)160,乙,乙;【分析】(1)由折线统计图直接可得a的值,利用平均数的计算公式计算即可;(2)根据乙的数据补全折线统计图,并注明图例,(3)计算乙的方差,比较做出选择.【详解】解:(1)根据折线统计图得,a=40;=(50+40+70+70+70)÷5=60;故答案为:40,60;(2)甲、乙两人考试成绩折线图,如图所示:(3)S2乙=[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160,∵S2甲=260,∴S2乙<S2甲,∴乙的成绩稳定,所以乙将被选中.故答案为:160,乙、乙.【点睛】本题考查折线统计图和统计表、平均数和方差,解题的关键是掌握折线统计图和统计表的信息读取、平均数和方差的计算.21、(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)至少应安排甲队工作10天.【分析】(1)根据题意列分式方程、解分式方程、重要验根;(2)由绿化总费用不超过8万元,列不等式、解不等式即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.【点睛】本题考查分式方程的实际应用、不等式的应用等知识,是常见重要考点,掌握相关知识是解题关键.22、(1)﹣10a6b3;(1)3a1+1ab﹣1b1【分析】(1)直接利用整式的混合运算法则分别化简得出答案;(1)直接利用乘法公式分别化简得出答案.【详解】解:(1)原式=﹣17a6b3﹣4a6(﹣b3)+3a6b3=﹣10a6b3;(1)原式=4a1﹣b1﹣(a1﹣1ab+b1)=3a1+1ab﹣1b1.【点睛】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.23、(1)普通列车的行驶路程是千米;(2)高铁的平均速度是千米/时【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;
(2)设普通列车平均速度是千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.【详解】(1)根据题意得:
400×1.3=520(千米),
答:普通列车的行驶路程是520千米;(2)设普通列车平均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州省毕节市七星关区2022-2023学年高三下学期高考第三次模拟考试思想政治考试题目及答案
- 2025年R1快开门式压力容器操作模拟考试题库及答案
- 2025-2030中国燃气具海外市场拓展战略与风险防范报告
- 2025-2030中国燃气企业客户服务数字化转型实践研究报告
- 2025-2030中国烘焙店饮品区坪效提升与设备选型建议报告
- 2025-2030中国智能交通系统建设现状及未来发展预测报告
- 2025-2030中国智慧医疗产业发展趋势与投资机会分析报告
- 2025-2030中国抗生素原料药出口贸易壁垒与应对方案报告
- 2025-2030中国心理咨询线上平台服务模式与效果评估研究报告
- 2025年心理咨询师基础理论知识测试卷:心理咨询师心理测评与评估实战考核实战考核实战试题
- 第二章 有理数及其运算 单元试卷(含答案)2025-2026学年北师大版七年级数学上册
- 印刷厂生产报表编制细则
- 幼儿防触电安全知识培训课件
- 仪表阀门培训课件
- 《诗经·卫风·淇奥》课件
- ULK1:细胞代谢调控网络中的关键节点-自噬与糖代谢的分子机制及功能解析
- 智能交通诱导
- 妇幼健康项目课件
- 梯田文化课件七年级
- CJ/T 164-2014节水型生活用水器具
- 消毒供应中心工作人员 职业安全和防护
评论
0/150
提交评论