2024届甘肃省武威第九中学八上数学期末调研试题含解析_第1页
2024届甘肃省武威第九中学八上数学期末调研试题含解析_第2页
2024届甘肃省武威第九中学八上数学期末调研试题含解析_第3页
2024届甘肃省武威第九中学八上数学期末调研试题含解析_第4页
2024届甘肃省武威第九中学八上数学期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省武威第九中学八上数学期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,把纸片沿折叠,当点落在四边形内部时,则与之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是()A. B.C. D.2.下列命题的逆命题为假命题的是()A.如果一元二次方程没有实数根,那么.B.线段垂直平分线上任意一点到这条线段两个端点的距离相等.C.如果两个数相等,那么它们的平方相等.D.直角三角形两条直角边的平方和等于斜边的平方.3.等边三角形的两个内角的平分线所夹的钝角的度数为()A. B. C. D.4.函数y=3x+1的图象一定经过点()A.(3,5) B.(-2,3) C.(2,5) D.(0,1)5.k、m、n为三整数,若,,,则下列有关于k、m、n的大小关系正确的是()A.k<m=n B.m=n<k C.m<n<k D.m<k<n6.下列各式中,计算结果是的是()A. B. C. D.7.下列各式计算正确的是()A. B.(3xy)2÷(xy)=3xyC. D.2x•3x5=6x68.下列分式中,最简分式的个数是()A.1个 B.2个 C.3个 D.4个9.国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A. B. C. D.10.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:,,3,,,分别对应下列六个字:益,爱,我,数,学,广,现将因式分解,结果呈现的密码信息可能是()A.我爱学 B.爱广益 C.我爱广益 D.广益数学二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点关于轴的对称点的坐标是__________.12.如图,△ABC≌△ADE,∠B=80°,∠C=30°,则∠E的度数为________.13.如图,木工师傅在做完门框后,为防止变形常常如图中所示那样钉上两条斜拉的木条,这样做是运用了三角形的________.14.如图,直线,,,则的度数是.15.如果多项式可以分解成两个一次因式的积,那么整数的值可取________个.16.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=____.17.如图,∠AOB=30°,OP平分∠AOB,PC∥OB交OA于C,PD⊥OB于D.如果PC=8,那么PD等于____________.18.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为纳米的碳纳米管,已知纳米米,则纳米用科学记数法表示为_____________米.三、解答题(共66分)19.(10分)(1)作图发现:如图1,已知,小涵同学以、为边向外作等边和等边,连接,.这时他发现与的数量关系是.(2)拓展探究:如图2,已知,小涵同学以、为边向外作正方形和正方形,连接,,试判断与之间的数量关系,并说明理由.(3)解决问题如图3,要测量池塘两岸相对的两点,的距离,已经测得,,米,,则米.20.(6分)在平面直角坐标系中,的位置如图所示,已知点的坐标是.(1)点的坐标为(,),点的坐标为(,);(2)的面积是;(3)作点关于轴的对称点,那么、两点之间的距离是.21.(6分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分)整理,分析过程如下:成绩学生甲014500乙114211(1)两组数据的极差、平均数、中位数、众数、方差如下表所示,请补充完整:学生极差平均数中位数众数方差甲83.78613.21乙2483.78246.21(2)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙”),理由为.22.(8分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表;班级

平均数(分)

中位数(分)

众数(分)

九(1)

85

85

九(2)

80

(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.23.(8分)如图,直线的解析表达式为,且与轴交于点.直线经过点,直线交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)在轴上求作一点,使的和最小,直接写出的坐标.24.(8分)四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”.“筝形”是一种特殊的四边形,它除了具有两组邻边分别相等的性质外,猜想它还有哪些性质?然后证明你的猜想.(以所给图形为例,至少写出三种猜想结果,用文字和字母表示均可,并选择猜想中的其中一个结论进行证明)25.(10分)已知:如图,相交于点.求证:26.(10分)在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?

参考答案一、选择题(每小题3分,共30分)1、A【分析】画出折叠之前的部分,连接,由折叠的性质可知,根据三角形外角的性质可得∠1=,∠2=,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接由折叠的性质可知∵∠1是的外角,∠2是的外角∴∠1=,∠2=∴∠1+∠2=+===故选A.【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.2、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】、逆命题为:如果一元一次方程中,那么没有实数根,正确,是真命题;、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.3、D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【详解】如图:∵∠ABC=∠ACB=,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30,∴在△OBC中,∠BOC=180−30−30=.故选D.【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.4、D【分析】根据一次函数图象上点的坐标特点把各点分别代入函数解析式即可.【详解】A.∵当x=3时,,∴(3,5)不在函数图像上;B.∵当x=-2时,,∴(-2,3)不在函数图像上;C.∵当x=2时,,∴(2,5)不在函数图像上;D.∵当x=0时,,∴(0,1)在函数图像上.故选:D.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.5、A【分析】先化简二次根式,再分别求出k、m、n的值,由此即可得出答案.【详解】由得:由得:由得:则故选:A.【点睛】本题考查了二次根式的化简,掌握化简方法是解题关键.6、D【解析】试题分析:利用十字相乘法进行计算即可.原式=(x-2)(x+9)故选D.考点:十字相乘法因式分解.7、D【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果.【详解】A.,故选项A错误;B.(3xy)2÷(xy)=9xy,故选项B错误;C.与不是同类二次根式,不能合并,故选项C错误;D.2x•3x5=6x6,正确.故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8、B【分析】利用最简分式的定义逐个分析即可得出答案.【详解】解:,,,这三个不是最简分式,所以最简分式有:,共2个,故选:B.【点睛】本题考查了最简分式的定义,熟练掌握相关知识点是解题关键.9、A【分析】根据轴对称图形的定义和图案特点即可解答.【详解】A、是轴对称图形,故选项正确;

B、不是轴对称图形,故本选项错误;

C不是轴对称图形,故选项错误;

D、不是轴对称图形,故本选项错误.

故选A.【点睛】此题考查轴对称图形的概念,解题关键在于掌握其定义和识别图形.10、C【分析】先运用提公因式法,再运用公式法进行因式分解即可.【详解】因为==所以结果呈现的密码信息可能是:我爱广益.故选:C【点睛】考核知识点:因式分解.掌握提公因式法和套用平方差公式是关键.二、填空题(每小题3分,共24分)11、【分析】点P的横坐标的相反数为所求的点的横坐标,纵坐标不变为所求点的纵坐标.【详解】解:点关于y轴的对称点的横坐标为-4;纵坐标为2;∴点关于y轴的对称点的坐标为,故答案为:.【点睛】用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.12、30°【分析】根据△ABC≌△ADE得到∠E=∠C即可.【详解】解:∵△ABC≌△ADE,∴∠C=∠E,∵∠C=30°,∴∠E=30°.故答案为:30°.【点睛】本题考查了全等三角形的性质,全等三角形的对应角相等,对应边相等,难度不大.13、稳定性【分析】根据“防止变形”的目的,联系三角形的性质,可得出答案.【详解】由三角形的稳定性可知,钉上两条斜拉的木条,可以防止变形,故答案是运用了三角形的稳定性.【点睛】本题考查了三角形稳定性的实际应用,熟练掌握三角形的性质即可完成.14、18°【分析】由平行可得∠4=∠1,再根据外角定理可得∠2+∠1=∠4,即可求出∠1.【详解】∵a∥b,∴∠4=∠1=70°,∵∠2=12°,∴∠1=∠4-∠2=18°.故答案为:18°.【点睛】本题考查平行的性质和外角定理,关键在于熟练掌握相关基础知识.15、1【分析】根据题意先把1分成2个整数的积的形式,共有1种情况,m值等于这两个整式的和.【详解】解:把1分成2个整数的积的形式有11,(-1)(-1),22,(-2)(-2)所以m有1+1=5,(-1)+(-1)=-5,2+2=1,(-2)+(-2)=-1,共1个值.故答案为:1.【点睛】本题主要考查分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.16、67°【解析】根据全等三角形的性质,两三角形全等,对应角相等,因为角与67°的角是对应角,因此,故答案为67°.17、1【分析】根据角平分线的性质,角平分线上的点到两角的距离相等,因而过P作PE⊥OA于点E,则PD=PE,因为PC∥OB,根据三角形的外角的性质得到:∠ECP=∠COP+∠OPC=30°,在直角△ECP中求得PD的长.【详解】解:过P作PE⊥OA于点E,

∵OP平分∠AOB,PD⊥OB于D∴PD=PE,∵PC∥OB∴∠OPC=∠POD,

又∵OP平分∠AOB,∠AOB=30°,

∴∠OPC=∠COP=15°,

∠ECP=∠COP+∠OPC=30°,

在直角△ECP中,则PD=PE=1.

故答案为:1.【点睛】本题主要考查了角平分线的性质和含有30°角的直角三角形的性质,正确作出辅助线是解决本题的关键.18、5×1−1【分析】0.5纳米=0.5×0.000000001米=0.0000000005米.小于1的正数也可以利用科学记数法表示,一般形式为a×1−n,在本题中a为5,n为5前面0的个数.【详解】解:0.5纳米=0.5×0.000000001米=0.0000000005米=5×1−1米.故答案为:5×1−1.【点睛】用科学记数法表示较小的数,一般形式为a×1−n,其中1≤|a|<1,n为由原数左边起第一个不为零的数字前面的0的个数.注意应先把0.5纳米转化为用米表示的数.三、解答题(共66分)19、(1)BE=CD;(2)BE=CD,理由见解析;(3)200.【分析】(1)利用等边三角形的性质得出,然后有,再利用SAS即可证明,则有;(2)利用正方形的性质得出,然后有,再利用SAS即可证明,则有;(3)根据前(2)问的启发,过作等腰直角,连接,,同样的方法证明,则有,在中利用勾股定理即可求出CD的值,则BE的值可求.【详解】(1)如图1所示:和都是等边三角形,,,即,在和中,,.(2),四边形和均为正方形,,,,,在和中,,,(3)如图3,过作等腰直角,,则米,,米,连接,,∴即在和中,,,,,在中,米,米,根据勾股定理得:(米),则米.【点睛】本题主要考查全等三角形的判定及性质,正方形的性质,等边三角形的性质和等腰直角三角形的性质,掌握全等三角形的判定及性质是解题的关键.20、(1)3,0;-2,5;(2);(3)作点C关于y轴的对称点C'见解析;.【分析】(1)直接利用坐标系得出各点坐标即可;(2)利用梯形面积减去两个直角三角形的面积即可求得答案;(3)利用关于坐标轴对称点的性质及两点间的距离公式即可得出答案.【详解】(1)由图可得,,

故答案为:3,0;-2,5;(2)如图,=10;(3)如图,顶点C关于y轴对称的点C'为所作,点C'的坐标为(2,5),∴.【点睛】本题主要考查了关于坐标轴对称点的性质、三角形面积公式以及勾股定理的运用,正确得出对应点位置是解题关键.21、(1)14,84.5,81;(2)甲,理由:甲乙平均数一样,甲同学成绩的方差小于乙同学成绩的方差,则甲同学成绩更稳定,故选甲【分析】(1)依据极差、中位数和众数的定义进行计算即可;(2)依据平均数和方差的角度分析,即可得到哪个学生的水平较高.【详解】(1)甲组数据的极差=89-75=14,甲组数据排序后,最中间的两个数据为:84和85,故中位数=(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数为81;故答案为:14,84.5,81;(2)甲,乙两位同学的平均数相同,甲同学成绩的方差小于乙同学成绩的方差,则甲同学成绩更稳定,故选甲.【点睛】本题主要考查了统计表,众数,中位数以及方差的综合运用,熟练掌握众数,中位数以及方差知识是解决本题的关键.22、(6)填表见解析.(6)九(6)班成绩好些;(6)70,6.【解析】试题分析:(6)分别计算九(6)班的平均分和众数填入表格即可.(6)根据两个班的平均分相等,可以从中位数的角度去分析这两个班级的成绩;(6)分别将两组数据代入题目提供的方差公式进行计算即可.试题解析:(6)(70+600+600+76+80)=86分,众数为600分中位数为:86分;班级

平均数(分)

中位数(分)

众数(分)

九(6)

86

86

86

九(6)

86

80

600

(6)九(6)班成绩好些,因为两个班级的平均数相同,九(6)班的中位数高,所以在平均数相同的情况下中位数高的九(6)班成绩好些;(6)S66=[(76-86)6+(80-86)6+6×(86-86)6+(600-86)6]=70,S66=[(70-86)6+(600-86)6+(600-86)6+(76-86)6+(80-86)6]=6.考点:6.方差;6.条形统计图;6.算术平均数;6.中位数;6.众数.23、(1)D(1,0);(2)y=x−6;(3)(,0).【解析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,代入A、B坐标求出k,b的值即可;(3)作点B关于x轴的对称点B’,连接B’C交x轴于M,则点M即为所求,联立解析式可求出点C坐标,然后求出直线B’C的解析式,令y=0求出x的值即可.【详解】解:(1)由y=−3x+3,令y=0,得−3x+3=0,解得:x=1,∴D(1,0);(2)设直线l2的表达式为y=kx+b,由图象知:A(4,0),B(3,),代入表达式y=kx+b,得,解得:∴直线l2的解析表达式为y=x−6;(3)作点B关于x轴的对称点B’,则B’的坐标的为(3,),连接B’C交x轴于M,则点M即为所求,联立,解得:,∴C(2,-3),设直线B’C的解析式为:y=mx+n,代入B’(3,),C(2,-3),得,解得:,∴直线B’C的解析式为:y=x−12,令y=0,即x−12=0,解得:,∴的坐标为(,0).【点睛】此题主要考查了求一次函数图象的交点、待定系数法求一次函数解析式以及轴对称求最短路径问题,关键是掌握两函数图象相交,交点坐标就是两函数解析式组成的方程组的解.24、①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;详见解析【分析】根据题意,即可写出该图形的性质,然后选择一个进行证明即可.【详解】解:如图:①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论