2023-2024学年江西省于都实验中学数学高三上期末学业质量监测模拟试题含解析_第1页
2023-2024学年江西省于都实验中学数学高三上期末学业质量监测模拟试题含解析_第2页
2023-2024学年江西省于都实验中学数学高三上期末学业质量监测模拟试题含解析_第3页
2023-2024学年江西省于都实验中学数学高三上期末学业质量监测模拟试题含解析_第4页
2023-2024学年江西省于都实验中学数学高三上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江西省于都实验中学数学高三上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是()A.12个月的PMI值不低于50%的频率为B.12个月的PMI值的平均值低于50%C.12个月的PMI值的众数为49.4%D.12个月的PMI值的中位数为50.3%2.已知正四面体的棱长为,是该正四面体外接球球心,且,,则()A. B.C. D.3.执行如图所示的程序框图若输入,则输出的的值为()A. B. C. D.4.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.4C. D.55.已知函数,若,则的最小值为()参考数据:A. B. C. D.6.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.7.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立8.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.9.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.10.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是()A. B. C. D.11.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知,则p是q的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,且,则的最小值为___________.14.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有_____人;所合买的物品价格为_______元.15.在中,已知是的中点,且,点满足,则的取值范围是_______.16.甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和.若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(Ⅰ)当时,解不等式;(Ⅱ)若的最小值为1,求的最小值.18.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:19.(12分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.20.(12分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,.(Ⅰ)证明:;(Ⅱ)若为上的动点,求与平面所成最大角的正切值.21.(12分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.22.(10分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中.(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.2、A【解析】

如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,,,在直角三角形中,,,,,,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.3、C【解析】

由程序语言依次计算,直到时输出即可【详解】程序的运行过程为当n=2时,时,,此时输出.故选:C【点睛】本题考查由程序框图计算输出结果,属于基础题4、B【解析】

还原几何体的直观图,可将此三棱锥放入长方体中,利用体积分割求解即可.【详解】如图,三棱锥的直观图为,体积.故选:B.【点睛】本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.5、A【解析】

首先的单调性,由此判断出,由求得的关系式.利用导数求得的最小值,由此求得的最小值.【详解】由于函数,所以在上递减,在上递增.由于,,令,解得,所以,且,化简得,所以,构造函数,.构造函数,,所以在区间上递减,而,,所以存在,使.所以在上大于零,在上小于零.所以在区间上递增,在区间上递减.而,所以在区间上的最小值为,也即的最小值为,所以的最小值为.故选:A【点睛】本小题主要考查利用导数研究函数的最值,考查分段函数的图像与性质,考查化归与转化的数学思想方法,属于难题.6、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.7、A【解析】

作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.8、B【解析】

据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.9、C【解析】

由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.10、A【解析】

先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题.当时,没有零点,所以命题是假命题.所以是真命题,是假命题,是假命题,是假命题.故选:.【点睛】本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象,考查学生对这些知识的理解掌握水平.11、D【解析】

根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.12、B【解析】

根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由,先将变形为,运用基本不等式可得最小值,再求的最小值,运用函数单调性即可得到所求值.【详解】解:因为,,,且,所以因为,所以,当且仅当时,取等号,所以令,则,令,则,所以函数在上单调递增,所以所以则所求最小值为故答案为:【点睛】此题考查基本不等式的运用:求最值,注意变形和满足的条件:一正二定三相等,考查利用单调性求最值,考查化简和运算能力,属于中档题.14、753【解析】

根据物品价格不变,可设共有x人,列出方程求解即可【详解】设共有人,由题意知,解得,可知商品价格为53元.即共有7人,商品价格为53元.【点睛】本题主要考查了数学文化及一元一次方程的应用,属于中档题.15、【解析】

由中点公式的向量形式可得,即有,设,有,再分别讨论三点共线和不共线时的情况,找到的关系,即可根据函数知识求出范围.【详解】是的中点,∴,即设,于是(1)当共线时,因为,①若点在之间,则,此时,;②若点在的延长线上,则,此时,.(2)当不共线时,根据余弦定理可得,解得,由,解得.综上,故答案为:.【点睛】本题主要考查学中点公式的向量形式和数量积的定义的应用,以及余弦定理的应用,涉及到函数思想和分类讨论思想的应用,解题关键是建立函数关系式,属于中档题.16、【解析】

分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果.【详解】甲被录取的概率;乙被录取的概率;只有一人被录取的概率.故答案为:.【点睛】本题考查独立事件概率的求解问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)当时,令,作出的图像,结合图像即可求解;(Ⅱ)结合绝对值三角不等式可得,再由“1”的妙用可拼凑为,结合基本不等式即可求解;【详解】(Ⅰ)令,作出它们的大致图像如下:由或(舍),得点横坐标为2,由对称性知,点横坐标为﹣2,因此不等式的解集为.(Ⅱ)..取等号的条件为,即,联立得因此的最小值为.【点睛】本题考查绝对值不等式、基本不等式,属于中档题18、(Ⅰ)最小值为;(Ⅱ)见解析【解析】

(1)根据题意构造平均值不等式,结合均值不等式可得结果;(2)利用分析法证明,结合常用不等式和均值不等式即可证明.【详解】(Ⅰ)则当且仅当,即,时,所以的最小值为.(Ⅱ)要证明:,只需证:,即证明:,由,也即证明:.因为,所以当且仅当时,有,即,当时等号成立.所以【点睛】本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)求函数的导函数,即可求得切线的斜率,则切线方程得解;(Ⅱ)构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【详解】(Ⅰ)当时,,则.所以.又,故所求切线方程为,即.(Ⅱ)依题意,得,即恒成立.令,则.①当时,因为,不合题意.②当时,令,得,,显然.令,得或;令,得.所以函数的单调递增区间是,,单调递减区间是.当时,,,所以,只需,所以,所以实数的取值范围为.【点睛】本题考查利用导数的几何意义求切线方程,以及利用导数研究恒成立问题,属综合中档题.20、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)由底面为边长为2的菱形,平面,,易证平面,可得;(Ⅱ)连结,由(Ⅰ)易知为与平面所成的角,在中,可求得.试题解析:(Ⅰ)∵四边形为菱形,且,∴为正三角形,又为中点,∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)连结,由(Ⅰ)知平面,∴为与平面所成的角,在中,,最大当且仅当最短,即时最大,依题意,此时,在中,,∴,,∴与平面所成最大角的正切值为.考点:1.线线垂直证明;2.求线面角.21、(1)证明见解析;(2)证明见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论