版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年上海市崇明县大同中学高三数学第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题若,则,则下列说法正确的是()A.命题是真命题B.命题的逆命题是真命题C.命题的否命题是“若,则”D.命题的逆否命题是“若,则”2.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.23.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是()A.小王或小李 B.小王 C.小董 D.小李4.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170 B.10 C.172 D.125.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.6.若集合,则=()A. B. C. D.7.已知满足,则()A. B. C. D.8.若集合,,则A. B. C. D.9.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是()A.0.2 B.0.5 C.0.4 D.0.810.若复数是纯虚数,则实数的值为()A.或 B. C. D.或11.设集合则()A. B. C. D.12.已知全集,集合,,则阴影部分表示的集合是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是__________.14.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.15.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.16.设复数满足,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数的最大值为3,其中.(1)求的值;(2)若,,,求证:18.(12分)已知函数.(1)解不等式;(2)若,,,求证:.19.(12分)已知函数.(Ⅰ)当时,求函数在上的值域;(Ⅱ)若函数在上单调递减,求实数的取值范围.20.(12分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都有.21.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.22.(10分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误.故选:B.【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.2、B【解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.3、D【解析】
根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.4、D【解析】
中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.5、A【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.6、C【解析】
求出集合,然后与集合取交集即可.【详解】由题意,,,则,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题.7、A【解析】
利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.8、C【解析】
解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.9、B【解析】
利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型的计算,属于基础题.10、C【解析】试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.考点:纯虚数11、C【解析】
直接求交集得到答案.【详解】集合,则.故选:.【点睛】本题考查了交集运算,属于简单题.12、D【解析】
先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.【详解】由,,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据双曲线方程,设及,将代入双曲线方程并化简可得,由题意的最小值为,结合平面向量数量积的坐标运算化简,即可求得的值,进而求得离心率即可.【详解】设点,,则,即,∵,,,当时,等号成立,∴,∴,∴.故答案为:.【点睛】本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.14、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.15、【解析】
先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.【详解】由已知及正弦定理,得,所以,,取AB中点E,AC中点F,BC中点G,如图所示显然平面区域任意两点距离最大值为,而,当且仅当时,等号成立.故答案为:.【点睛】本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题.16、.【解析】
利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.【详解】∵复数满足,∴,∴,故而可得,故答案为.【点睛】本题考查了复数的运算法则,共轭复数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】
(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab≥1,再构造函数利用导数判断单调性求出最小值可证.【详解】(1)∵,∴.∴当时,取得最大值.∴.(2)由(Ⅰ),得,.∵,当且仅当时等号成立,∴.令,.则在上单调递减.∴.∴当时,.∴.【点睛】本题考查了绝对值不等式的解法,属中档题.本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.18、(1);(2)证明见解析.【解析】
(1)分、、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,,所以,,,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)把代入,可得,令,求出其在上的值域,利用对数函数的单调性即可求解.(Ⅱ)根据对数函数的单调性可得在上单调递增,再利用二次函数的图像与性质可得解不等式组即可求解.【详解】(Ⅰ)当时,,此时函数的定义域为.因为函数的最小值为.最大值为,故函数在上的值域为;(Ⅱ)因为函数在上单调递减,故在上单调递增,则解得,综上所述,实数的取值范围.【点睛】本题主要考查了利用对数函数的单调性求值域、利用对数型函数的单调区间求参数的取值范围以及二次函数的图像与性质,属于中档题.20、;证明见解析.【解析】
当时,集合共有个子集,即可求出结果;分类讨论,利用数学归纳法证明.【详解】当时,集合共有个子集,所以;①当时,,由可知,,此时令,,,,满足对任意,都有,且;②假设当时,存在有序集合组满足题意,且,则当时,集合的子集个数为个,因为是4的整数倍,所以令,,,,且恒成立,即满足对任意,都有,且,综上,原命题得证.【点睛】本题考查集合的自己个数的研究,结合数学归纳法的应用,属于难题.21、(1)(2)证明见解析;定点坐标为【解析】
(1)由条件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)由得,.又∴,同理又∴∴∴∴∴∴,此时满足∴∴直线恒过定点【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南理工职业技术学院单招职业适应性测试参考题库及答案解析
- 2026年贵州轻工职业技术学院单招职业适应性考试备考题库及答案解析
- 2026年上海电力大学单招职业适应性考试模拟试题及答案解析
- 期末大班个人总结合集14篇
- 2026年广州城建职业学院单招职业适应性考试备考题库及答案解析
- 2026年贵州健康职业学院单招职业适应性测试备考试题及答案解析
- 2026年辽宁医药职业学院单招职业适应性测试模拟试题及答案解析
- 湖南省郴州市宜章县2025-2026学年八年级上学期12月月考数学试题(无答案)
- 2026年福建林业职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年云南城市建设职业学院单招职业适应性测试模拟试题及答案解析
- (正式版)DB65∕T 4229-2019 《肉牛、肉羊全混合日粮(∕TMR)搅拌机》
- 诚信教育主题班会诚就未来信立人生课件
- 2025年高压电工考试题库:安全事故应急响应与救援措施试题卷
- 《数控机床编程与仿真加工》课件-项目9斯沃数控铣仿真软件的操作
- 2025年税务考试题库大题及答案
- 江西省赣州市2024-2025学年高一上学期1月期末考试生物试题(含答案)
- 奉贤区2024-2025学年六年级上学期期末考试数学试卷及答案(上海新教材沪教版)
- 渝20Q01 建设工程施工现场围挡及大门标准图集(2020版)DJBT50-133
- 肉制品运输管理制度
- 【2022年版】义务教育英语课程标准(附解读)
- T/JSGS 017-2023树脂复合材料装配式给水检查井技术规范
评论
0/150
提交评论