




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温州市八中学数八年级数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等 B.斜边和一锐角对应相等C.斜边和一直角边对应相等 D.两个面积相等的直角三角形2.若一个三角形的两边长分别为2和4,则第三边长可能是().A.1 B.2 C.3 D.73.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA4.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条 B.3条 C.5条 D.无数条5.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.6.如图,四边形中,,,将四边形沿对角线折叠,点恰好落在边上的点处,,则的度数是()A.15° B.25° C.30° D.40°7.下列运算正确的是()A. B. C. D.8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A. B. C. D.9.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()12345成绩(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.010.已知中,,求证:,运用反证法证明这个结论,第一步应先假设()成立A. B. C. D.11.已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA﹣PB|最大时,点P的坐标为()A.(﹣1,0) B.(,0) C.(,0) D.(1,0)12.在下列交通标识图案中,不是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.·(-)的值为_______14.现定义一种新的运算:,例如:,则不等式的解集为.15.如图,在中,,的外角平分线相交于点,若,则________度.16.如图,在中,,,过点作,连接,过点作于点,若,的面积为6,则的长为____________.17.在中,,为直线上一点,为直线上一点,,设,.(1)如图1,若点在线段上,点在线段上,则,之间关系式为__________.(2)如图2,若点在线段上,点在延长线上,则,之间关系式为__________.18.如图,在中,,AD平分交BC于点D,若,,则的面积为______.三、解答题(共78分)19.(8分)某商场销售两种品牌的足球,购买2个品牌和3个品牌的足球共需280元;购买3个品牌和1个品牌的足球共需210元.(1)求这两种品牌足球的单价;(2)开学前,该商场对这两种足球开展了促销活动,具体办法如下:品牌足球按原价的九折销售,品牌足球10个以上超出部分按原价的七折销售.设购买个品牌的足球需要元,购买个品牌的足球需要元,分别求出,关于的函数关系式.(3)某校准备集体购买同一品牌的足球,若购买足球的数量为15个,购买哪种品牌的足球更合算?请说明理由.20.(8分)图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t(分钟)之间的关系图象.(1)从图象知,通话2分钟需付的电话费是元;(2)当t≥3时求出该图象的解析式(写出求解过程);(3)通话7分钟需付的电话费是多少元?21.(8分)如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)作出△ABC关于y轴对称的△A1B1C1.(2)△A1B1C1的面积为(3)在y轴上作出点Q,使△QAB的周长最小.22.(10分)阅读下面材料:小明遇到这样一个问题:如图1,在中,平分,.求证:小明通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如图2,在上截取,使得,连接,可以得到全等三角形,进而解决问题方法二:如图3,延长到点,使得,连接,可以得到等腰三角形,进而解决问题(1)根据阅读材料,任选一种方法证明(2)根据自己的解题经验或参考小明的方法,解决下面的问题:如图4,四边形中,是上一点,,,,探究、、之间的数量关系,并证明23.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1、B1、C1的坐标.(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.24.(10分)四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”.“筝形”是一种特殊的四边形,它除了具有两组邻边分别相等的性质外,猜想它还有哪些性质?然后证明你的猜想.(以所给图形为例,至少写出三种猜想结果,用文字和字母表示均可,并选择猜想中的其中一个结论进行证明)25.(12分)如图,四边形中,.动点从点出发,以的速度向点移动,设移动的时间为秒.(1)当为何值时,点在线段的垂直平分线上?(2)在(1)的条件下,判断与的位置关系,并说明理由.26.如图,等边△ABC的边AC,BC上各有一点E,D,AE=CD,AD,BE相交于点O.(1)求证:△ABE≌△CAD;(2)若∠OBD=45°,求∠ADC的度数.
参考答案一、选择题(每题4分,共48分)1、D【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.2、C【分析】利用三角形的三边关系定理求出第三边长的取值范围,由此即可得.【详解】设第三边长为,由三角形的三边关系定理得:,即,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了三角形的三边关系定理的应用,熟记三角形的三边关系定理是解题关键.3、D【详解】试题分析:△ABC和△CDE是等边三角形BC=AC,CE=CD,即在△BCD和△ACE中△BCD≌△ACE故A项成立;在△BGC和△AFC中△BGC≌△AFCB项成立;△BCD≌△ACE,在△DCG和△ECF中△DCG≌△ECFC项成立D项不成立.考点:全等三角形的判定定理.4、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】五角星的对称轴共有5条,故选C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.5、B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.6、B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】解:∵∠A′BC=20°,,∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∴∠A′BD=∠ABA′=25°.故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.7、C【分析】由负整数指数幂的运算法则可以得到答案.【详解】解:所以A,B,D错误;C正确.故选C.【点睛】本题考查的是负整数指数幂的运算,熟悉负整数指数幂的运算法则是关键.8、C【详解】设用x张制作盒身,y张制作盒底,根据题意得:故选C.【点睛】此题考查二元一次方程组问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.9、D【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.10、A【分析】根据反证法的步骤,第一步要从结论的反面出发假设结论,即可判断.【详解】解:的反面为故选A.【点睛】此题考查的是反证法的步骤,掌握反证法的第一步为假设结论不成立,并找到结论的反面是解决此题的关键.11、B【解析】作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.【详解】作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,1),∴C的坐标为(1,﹣1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=﹣2x+1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|PA﹣PB|=|PC﹣PB|<BC,∴此时|PA﹣PB|=|PC﹣PB|=BC取得最大值.故选:B.【点睛】此题考查了轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大,解题的关键是找到P点,注意数形结合思想与方程思想的应用.12、D【分析】根据轴对称图形的概念对各个选项进行判断即可.【详解】A、B、C中的图案是轴对称图形,D中的图案不是轴对称图形,故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.二、填空题(每题4分,共24分)13、-6xy【解析】试题分析:原式===-6xy.故答案为-6xy.14、【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.【详解】根据题意知:(﹣1)1﹣1x≥0,﹣1x≥﹣4,解得:x≤1.故答案为:x≤1.【点睛】本题考查了解一元一次不等式,解题的关键是根据新定义列出关于x的不等式.15、【解析】根据三角形的内角和定理,得∠ACB+∠ABC=180°-74°=106°;再根据邻补角的定义,得两个角的邻补角的和是360°-106°=254°;再根据角平分线的定义,得∠OCB+∠OBC=127°;最后根据三角形的内角和定理,得∠O=53°.【详解】解:∵∠A=74°,∴∠ACB+∠ABC=180°-74°=106°,∴∠BOC=180°-(360°-106°)=180°-127°=53°.故答案为53【点睛】此题综合运用了三角形的内角和定理以及角平分线定义.注意此题中可以总结结论:三角形的相邻两个外角的角平分线所成的锐角等于90°减去第三个内角的一半,即∠BOC=90°-∠A.16、【分析】过点A作AH⊥DC交DC的延长线于点H,作AF⊥BC于点F,通过等腰直角三角形的性质和关系得出,从而有,然后证明四边形AFCH是正方形,则有,进而通过勾股定理得出,然后利用的面积为6即可求出BC的长度.【详解】过点A作AH⊥DC交DC的延长线于点H,作AF⊥BC于点F∵,,AF⊥BC∵AF⊥BC,∵∵AF⊥BC,,AH⊥DC,∴四边形AFCH是正方形故答案为:.【点睛】本题主要考查等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质,掌握等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质是解题的关键,难点在于如何找到BC与CD之间的关系.17、【分析】(1)利用等腰三角形的性质和三角形的内角和即可得出结论;(2)当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论.【详解】(1)设∠ABC=x,∠AED=y,∵,,∴∠ACB=∠ABC,∠AED=∠ADE∴∠ACB=x,∠ADE=y,在△DEC中,∵∠AED=∠ACB+∠EDC,∴y=β+x,在△ABD中,∵∠ADC=∠BAD+∠ABC,∠ADC=∠ADE+∠EDC=∠AED+∠EDC,∴α+x=y+β=β+x+β,∴α=2β;故答案为:α=2β;(2)当点E在CA的延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,∵,,∴∠ACB=∠ABC,∠AED=∠ADE,∴∠ACB=x,∠AED=y,在△ABD中,∵∠ADC=∠BAD+∠ABC,∠ADC=∠EDC-∠ADE,∴x+α=β-y,在△DEC中,∵∠ECD+∠CED+∠EDC=180°,∴x+y+β=180°,∴α=2β-180°;故答案为α=2β-180°.【点睛】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.18、1【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=2,然后根据三角形面积公式计算.【详解】解:作DH⊥AB于H,如图,
∵AD平分∠BAC,DH⊥AB,DC⊥AC,
∴DH=DC=2,∴△ABD的面积=故答案为1.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.三、解答题(共78分)19、(1)A品牌足球的单价为50元,B品牌足球的单价为60元;(2);;(3)购买A品牌的足球更划算,理由见解析【分析】(1)设A品牌足球的单价为a元,B品牌足球的单价为b元,根据题意列方程组,解方程组即可;(2)分别根据A、B品牌的促销方式表示出购买所需费用即可,对B品牌分类讨论;(3)根据上述所求关系式,分别求出当购买足球的数量为15个时,购买两种品牌足球的价格,花费越少越划算.【详解】(1)设A品牌足球的单价为x元,B品牌足球的单价为y元,,解得:.答:A品牌足球的单价为50元,B品牌足球的单价为60元.(2)A品牌:;B品牌:①当0≤x≤10时,;②当x>10时,.综上所述:;.(3)购买A品牌:45×15=675(元);购买B品牌:15>10,42×15+180=810,675<810,所以购买A品牌的足球更划算.【点睛】本题主要考查二元一次方程组和一次函数的实际应用,正确列出二元一次方程组和一次函数是解题关键.20、(1)2.4(2)(3)8.4【分析】(1)直接观察图像,即可得出t=2时,y=2.4,即通话2分钟需付的电话费是2.4元;(2)通过观察图像,t≥3时,y与t之间的关系是一次函数,由图像得知B、C两点坐标,设解析式,代入即可得解;(3)把t=7直接代入(2)中求得的函数解析式,即可得出y=8.4,即通话7分钟需付的电话费是8.4元.【详解】解:(2)由图得B(3,2.4),C(5,5.4)设直线BC的表达式为,解得∴直线BC的表达式为.(3)把x=7代入解得y=8.4【点睛】此题主要考查一次函数图像的性质和解析式的求解,熟练运用即可得解.21、(1)见解析;(2)4.2;(3)见解析【分析】(1)根据关于y轴对称的点的坐标特点作出△A1B1C1即可;
(2)根据S△A1B1C1=S矩形EFGH-S△A1EB1-S△B1FC1-S△A1HC1进行解答即可;
(3)连接A1B交y轴于Q,于是得到结论;【详解】解:(1)如图所示:△A1B1C1即为所求;(2)S△A1B1C1=S矩形EFGH-S△A1EB1-S△B1FC1-S△A1HC1
=3×2-×1×2-×2×2-×3×3
=12-1-2-4.2
=4.2.
故答案为:4.2;(3)连接A1B与y轴交于点Q,点Q就是所要求的点(或连接B1A交y轴于点Q)【点睛】本题考查的是作图-轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.22、(1)证明见解析;(2),证明见解析【分析】(1)方法一,在上截取,使得,连接,用SAS定理证明,然后得到,,从而得到,然后利用等角对等边求证,使问题得解;方法二,延长到点,使得,连接,利用三角形外角的性质得到∠ABC=2∠E,从而得到∠E=∠C,利用AAS定理证明△AED≌△ACD,从而求解;(2)在上截取,使得,连接,利用三角形外角的性质求得,从而得到,利用SAS定理证明,然后利用全等三角形的性质求解.【详解】解:(1)方法一:如图2,在上截取,使得,连接,∵平分,∴又∵,∴∴,∵∴∴∴∴方法二:如图3,延长到点,使得,连接,∵平分,∴∵∴∠ABC=2∠E又∵∴∠E=∠C∵AD=AD∴△AED≌△ACD∴AC=AE=AB+BE=AB+BD(2)在上截取,使得,连接∵∴∴∵∴∴∵∴∴∴∴,∵∴∴∴∴.【点睛】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23、(1)图详见解析,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)详见解析;(3)△A1B1C1和△A2B2C2关于直线x=3对称.【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用点利用的坐标规律写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)利用对称轴的对应可判断△A1B1C1和△A2B2C2关于直线x=3对称.【详解】解:(1)如图,△A1B1C1为所作,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)如图,△A2B2C2为所作;(3)△A1B1C1和△A2B2C2关于直线x=3对称,如图.【点睛】本题考查轴画轴对称图形,关键在于熟记轴对称的基础知识,理解题意.24、①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;详见解析【分析】根据题意,即可写出该图形的性质,然后选择一个进行证明即可.【详解】解:如图:①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;理由:①AD=CD,AB=CB,BD=BD,∴△ABD≌△CBD;∴△ABD与△CBD关于直线BD对称;②由①△ABD≌△CBD,∴∠DAB=∠DCB;③∵AD=CD,AB=CB,∴点B、点D在线段AC的垂直平分线上,∴AC⊥BD;④由③可知,点B、点D在线段AC的垂直平分线上,∴BD平分AC;⑤由①知△ABD≌△CBD,∠ADB=∠CDB,∠ABD=∠CBD,∴BD平分∠ADC和∠ABC;【点睛】本题考查了“筝形”的性质,全等三角形的判定和性质,垂直平分线的性质,在轴对称的性质,解题的关键是熟练
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自贡职业技术学院《化学制药工程》2023-2024学年第二学期期末试卷
- 脐静脉置管后的护理
- 高精度数字电位计行业深度调研及发展项目商业计划书
- 信用保险AI应用企业制定与实施新质生产力项目商业计划书
- 证券信息化AI应用行业深度调研及发展项目商业计划书
- 机构股票投资AI应用行业跨境出海项目商业计划书
- 乡村文化与自然景观的创新融合-洞察阐释
- 热射病病人的急救护理
- 基于AR的动态舞台照明与视觉效果研究-洞察阐释
- 宏定义数据管理与存储-洞察阐释
- 2024年地理中考重点综合题答题模板
- 卒中中心宣教管理制度
- 2023年高考语文试卷及答案(浙江卷)
- 2023年一般行业安全负责人和安全员考试题库
- 《水电水利工程施工监理规范》
- 汽车租赁服务投标方案(技术方案2)
- 工作场所有害因素职业接触限值-第2部分-物理因素
- 普通家庭装修预算表(全面细致)
- 畜牧业的动物福利与保护
- 售后常见问题以及处理方法分解课件
- 汽车线控底盘技术
评论
0/150
提交评论