版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年广东省五华县联考中考数学对点突破模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A. B.C. D.2.一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断3.如图所示的正方体的展开图是()A. B. C. D.4.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.5.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长 B.线段EF的长逐渐减小C.线段EF的长始终不变 D.线段EF的长与点P的位置有关6.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.127.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是()A.70° B.50° C.40° D.35°8.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为()A. B. C. D.9.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()A. B. C. D.10.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_____.12.若关于x的方程=0有增根,则m的值是______.13.计算(-2)×3+(-3)=_______________.14.已知:正方形ABCD.求作:正方形ABCD的外接圆.作法:如图,(1)分别连接AC,BD,交于点O;(2)以点O为圆心,OA长为半径作⊙O,⊙O即为所求作的圆.请回答:该作图的依据是__________________________________.15.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小等于__________度.16.计算(﹣a)3•a2的结果等于_____.三、解答题(共8题,共72分)17.(8分)已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.18.(8分)如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.求证:DE=CE.若∠CDE=35°,求∠A的度数.19.(8分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣20.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.21.(8分)请你仅用无刻度的直尺在下面的图中作出△ABC的边AB上的高CD.如图①,以等边三角形ABC的边AB为直径的圆,与另两边BC、AC分别交于点E、F.如图②,以钝角三角形ABC的一短边AB为直径的圆,与最长的边AC相交于点E.22.(10分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD;23.(12分)计算:﹣22﹣+|1﹣4sin60°|24.化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】
根据题意找到从左面看得到的平面图形即可.【题目详解】这个立体图形的左视图是,
故选:B.【题目点拨】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.2、B【解题分析】
试题解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选B.考点:根的判别式.3、A【解题分析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【题目详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【题目点拨】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.4、A【解题分析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形5、C【解题分析】试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C.考点:1、矩形性质,2、勾股定理,3、三角形的中位线6、D【解题分析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【题目详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【题目点拨】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.7、B【解题分析】分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.详解:∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.8、D【解题分析】解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.9、A【解题分析】
根据应用题的题目条件建立方程即可.【题目详解】解:由题可得:即:故答案是:A.【题目点拨】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.10、D【解题分析】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解题分析】
由点A(1,1),可得OA的长,点A在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可.【题目详解】∵A(1,1),∴OA=,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=,故答案为:.【题目点拨】本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出OA=以及∠AOB=45°也是解题的关键.12、2【解题分析】去分母得,m-1-x=0.∵方程有增根,∴x=1,∴m-1-1=0,∴m=2.13、-9【解题分析】
根据有理数的计算即可求解.【题目详解】(-2)×3+(-3)=-6-3=-9【题目点拨】此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.14、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【解题分析】
利用正方形的性质得到OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O上,从而得到⊙O为正方形的外接圆.【题目详解】∵四边形ABCD为正方形,∴OA=OB=OC=OD,∴⊙O为正方形的外接圆.故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【题目点拨】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15、45【解题分析】试题解析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.考点:1.等腰三角形的性质;2.三角形内角和定理.16、﹣a5【解题分析】
根据幂的乘方和积的乘方运算法则计算即可.【题目详解】解:(-a)3•a2=-a3•a2=-a3+2=-a5.故答案为:-a5.【题目点拨】本题考查了幂的乘方和积的乘方运算.三、解答题(共8题,共72分)17、见解析.【解题分析】
根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【题目详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【题目点拨】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.18、(1)见解析;(2)40°.【解题分析】
(1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.【题目详解】(1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【题目点拨】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.19、【解题分析】
原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;【题目详解】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣时,原式=12+(﹣)2=1+=.【题目点拨】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20、详见解析.【解题分析】试题分析:利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.试题解析:证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.考点:全等三角形的判定与性质.21、(1)详见解析;(2)详见解析.【解题分析】
(1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得.【题目详解】(1)如图所示,CD即为所求;(2)如图,CD即为所求.【题目点拨】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 我学会了做某事的意义与价值作文8篇范文
- 文化与创意产业保护承诺书3篇
- 在线信息使用承诺书(3篇)
- 工程质量安全无承诺书8篇范文
- 辽宁用电安全知识培训课件
- 产教联盟推动职业教育高质量发展-洞察及研究
- 《深圳市物业服务合同履约监管协议》合同二篇
- 跳跃安全大班课件
- 肠道菌群药物靶点筛选-洞察及研究
- 光伏电站电缆沟敷设施工方案
- 集水井施工方案
- 大学美育课件 第十二章 生态美育
- 美国技术贸易壁垒对我国电子产品出口的影响研究-以F企业为例
- 2025至2030中国电站汽轮机行业项目调研及市场前景预测评估报告
- MK6油雾检测器(中文)1
- 采购部门月度汇报
- 靶向阿托品递送系统设计-洞察及研究
- 2025检验科个人年终工作总结
- 救护车急救护理查房
- 工程竣工移交单(移交甲方、物业)
- 交熟食技术协议书
评论
0/150
提交评论