版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省巢湖市名校2024届数学八上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.下列多项式中,能分解因式的是()A. B. C. D.3.在△ABC中,D是BC上的一点,且△ABD的面积与△ADC的面积相等,则线段AD为△ABC的().A.高 B.角平分线 C.中线 D.不能确定4.下面几个数:3.14,,,,,其中,无理数的个数有()A.1 B.2 C.3 D.45.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是A. B. C. D.6.如图,直线m是ΔABC中BC边的垂直平分线,点P是直线m上的动点.若AB=6,AC=4,BC=1.则△APC周长的最小值是A.10 B.11 C.11.5 D.137.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为()A.22 B.22.5 C.23 D.258.在下列说法中:①有一个外角是120°的等腰三角形是等边三角形.②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形.④三个外角都相等的三角形是等边三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个9.下面四个手机图标中,可看作轴对称图形的是()A. B. C. D.10.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=()A.10° B.15° C.20° D.25°二、填空题(每小题3分,共24分)11.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.12.如图,在中,,点在边上,连接,过点作于点,连接,若,则的面积为________.13.若m+n=3,则代数式m2+2mn+n2-6的值为__________.14.点(−1,3)关于轴对称的点的坐标为____.15.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.16.已知一组数据为:5,3,3,6,3则这组数据的方差是______.17.如图,在中,的中垂线与的角平分线交于点,则四边形的面积为____________18.计算(2x)3÷2x的结果为________.三、解答题(共66分)19.(10分)在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?20.(6分)某校为美化校园环境,安排甲、乙两个工程队独立完成面积为400m2的绿化区域.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校计划对面积为1800m2的区域进行绿化,每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?21.(6分)某校对全校3000名学生本学期参加艺术学习活动的情况进行评价,其中甲班学生本学期参观美术馆的次数以及艺术评价等级和艺术赋分的统计情况,如下表所示:图(1)图(2)(1)甲班学生总数为______________人,表格中的值为_____________;(2)甲班学生艺术赋分的平均分是______________分;(3)根据统计结果,估计全校3000名学生艺术评价等级为级的人数是多少?22.(8分)已知函数,(1)为何值时,该函数是一次函数(2)为何值时,该函数是正比例函数.23.(8分)如图,已知和均是等边三角形,点在上,且.求的度数.24.(8分)如图,已知,,三点.(1)作关于轴的对称图形,写出点关于轴的对称点的坐标;(2)为轴上一点,请在图中找出使的周长最小时的点并直接写出此时点的坐标(保留作图痕迹).25.(10分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.26.(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?
参考答案一、选择题(每小题3分,共30分)1、B.【解析】试题分析:根据轴对称图形的概念:A、C、D都可以沿某一直线折叠后重合,是轴对称图形.故选B.考点:轴对称图形.2、D【分析】根据因式分解的各个方法逐一判断即可.【详解】解:A.不能因式分解,故本选项不符合题意;B.不能因式分解,故本选项不符合题意;C.不能因式分解,故本选项不符合题意;D.,能因式分解,故本选项符合题意.故选D.【点睛】此题考查的是因式分解,掌握因式分解的各个方法是解决此题的关键.3、C【分析】三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.【详解】设BC边上的高为h,∵S△ABD=S△ADC,∴×h×BD=×h×CD,故BD=CD,即AD是中线.故选C.4、B【分析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】3.14是有理数,=-1.4是有理数,是无理数,是有理数,是无理数,所以无理数有2个,故选B.【点睛】本题主要考查了无理数定义.初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方开不尽的数,如,等;③虽有规律但是无限不循环的数,如1.1111111111…,等.5、A【解析】试题分析:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是.故选A.考点:由实际问题抽象出分式方程.6、A【分析】根据垂直平分线的性质BP=PC,所以△APC周长=AC+AP+PC=AC+AP+BP≥AC+AB=10.【详解】如图,连接BP∵直线m是ΔABC中BC边的垂直平分线,∴BP=PC,∴△APC周长=AC+AP+PC=AC+AP+BP,∵两点之间线段最短∴AP+BP≥AB,∴△APC周长最小为AC+AB=10.【点睛】本题主要考查线段垂直平分线的性质定理,以及两点之间线段最短.做本题的关键是能得出AP+BP≥AB,做此类题的关键在于能根据题设中的已知条件,联系相关定理得出结论,再根据结论进行推论.7、B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b,将x=4时,y=20;x=12时,y=30代入求得k、b值,可得函数解析式,再将x=6代入求得对应的y值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:,解得:,∴,当x=6时,,故选:B.【点睛】本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.8、B【分析】根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.【详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:B.【点睛】此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.9、A【分析】根据轴对称图形的概念结合所给图形即可得出答案.【详解】第一个图形是轴对称图形;第二是中心对称图形;第三、四个不是轴对称图形小也不是中心对称图形.故选A.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【详解】解:∵D为BC的中点,AD⊥BC,∴EB=EC,AB=AC∴∠EBD=∠ECD,∠ABC=∠ACD.又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选C.【点睛】本题考查等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系.二、填空题(每小题3分,共24分)11、【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.12、1【分析】如图,作CH⊥AD交AD的延长线于H.只要证明△ABD≌△CAH(AAS),推出AD=CH=4,即可解决问题.【详解】如图,作CH⊥AD交AD的延长线于H.∵AD⊥BE,CH⊥AH,∴∠ADB=∠H=∠ABC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAH=90°,∴∠CAH=∠ABD,∵AB=AC,∴△ABD≌△CAH(AAS),∴AD=CH=4,∴S△ADC=×4×4=1.故答案为1.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.13、3【分析】根据完全平方公式,将m2+2mn+n2改写成,然后把已知条件代入即可【详解】∵m+n=3,∴m2+2mn+n2-6=(m+n)2-6=9-6=3,故答案为:3.14、(-1,-3).【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),
故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.15、1.【解析】试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.考点:关于y轴对称16、【解析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:,则这组数据的方差是;故答案为.【点睛】此题考查了方差:一般地设n个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、【分析】过点E作EG⊥AB交射线AB于G,作EH⊥AC于H,根据矩形的定义可得四边形AGEH为矩形,然后根据角平分线的性质可得EG=EH,从而证出四边形AGEH为正方形,可得AG=AH,然后利用HL证出Rt△EGB≌Rt△EHC,从而得出BG=HC,列出方程即可求出AG,然后根据S四边形ABEC=S四边形ABEH+S△EHC即可证出S四边形ABEC=S正方形AGEH,最后根据正方形的面积公式求面积即可.【详解】解:过点E作EG⊥AB交射线AB于G,作EH⊥AC于H∴∠AGE=∠GAH=∠AHE=90°∴四边形AGEH为矩形∵AF平分∠BAC∴EG=EH∴四边形AGEH为正方形∴AG=AH∵DE垂直平分BC∴EB=EC在Rt△EGB和Rt△EHC中∴Rt△EGB≌Rt△EHC∴BG=HC∴AG-AB=AC-AH∴AG-3=4-AG解得AG=∴S四边形ABEC=S四边形ABEH+S△EHC=S四边形ABEH+S△EGB=S正方形AGEH=AG2=故答案为:.【点睛】此题考查的是正方形的判定及性质、角平分线的性质、垂直平分线的性质、全等三角形的判定及性质和正方形的面积公式,掌握正方形的判定及性质、角平分线的性质、垂直平分线的性质、全等三角形的判定及性质和正方形的面积公式是解决此题的关键.18、【分析】按照同底数幂的除法法则及积的乘方法则运算即可.【详解】解:(2x)3÷2x,故答案为:.【点睛】本题考查同底数幂的除法法则、积的乘方法则.学会识别,熟悉法则是解题的基础.三、解答题(共66分)19、(1)200米;(2)140天【分析】(1)设甲队每天修路x米,根据甲队修600米与乙队修路450米所用天数相同,列出方程即可解决问题.(2)设乙队需要y天完工,根据甲队施工的时间不超过120天列出不等式,解得即可.【详解】解:(1)设甲队每天修路x米,则乙队每天修路(x-50)米,根据关系式可列方程为:,解得x=200,检验:当x=200时,x(x-50)≠0,x=200是原方程的解,答:甲队每天修路200米.(2)设乙队需要y天完工,由(1)可得乙队每天修路150米,∵甲队施工的时间不超过120天,根据题意可得:,解得:y≥140,答:乙队至少需要140天才能完工.【点睛】本题考查了分式方程和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程与不等式.20、(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)至少应安排甲队工作10天.【分析】(1)根据题意列分式方程、解分式方程、重要验根;(2)由绿化总费用不超过8万元,列不等式、解不等式即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.【点睛】本题考查分式方程的实际应用、不等式的应用等知识,是常见重要考点,掌握相关知识是解题关键.21、(1)50,5;(2)7.4;(3)600.【分析】(1)用B级的人数除以所占百分比即可得到甲班学生总数,用学生总数减去A,B,C级的人数可得到a的值;(2)根据加权平均数的计算方法求解即可;(3)用3000乘以样本中A级所占的比例即可.【详解】解:(1)甲班学生总数为:20÷40%=50(人),a=50-10-20-15=5,故答案为:50,5;(2)甲班学生艺术赋分的平均分=(分),故答案为:7.4;(3)(人),答:估计全校3000名学生艺术评价等级为级的人数是600人.【点睛】本题考查了统计表与扇形统计图、求加权平均数以及样本估计总体,能够从统计表或统计图中获取有用信息是解题的关键.22、(1);(2)且.【分析】(1)根据一次函数定义得到m−1≠0,易得m的值;(2)根据正比例函数定义得到m−1≠0且n=0,易得m,n的值.【详解】解:(1)当该函数是一次函数时,.当时,该函数是一次函数.(2)当该函数是正比例函数时,且.且,该函数是正比例函数.【点睛】考查了正比例函数和一次函数的定义,熟记一次函数与正比例函数的一般形式即可解题,属于基础题.23、【分析】根据等边三角形的性质可证明△ABD≌△ACE,根据全等三角形的性质得到BD=CE,∠ACE=∠B=60°,进而得到DC=CE,∠DCE=120°,根据等腰三角形的性质以及三角形内角和定理即可得出结论.【详解】∵与均是等边三角形,∴,,,∴,∴,∴,,∴,,∴.【点睛】本题考查了等边三角形的性质以及等腰三角形的判定.证明三角形△ABD≌△ACE是解答本题的关键.24、(1)画图见解析;(2)画图见解析,点的坐标为【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【详解】(1)如图所示,即为所求;的坐标为,(2)如图所示,连接,交轴于点,点的坐标为.【点睛】本题考查了作图-轴对称变换,轴对称-最短路线问题,熟练掌握轴对称的性质是解题的关键.25、(1)1;(2);.【解析】试题分析:(1)设AB=x,根据折叠可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 打桩斜压施工方案(3篇)
- 设计施工方案汇报(3篇)
- 瑜伽活动策划方案名字(3篇)
- 圣诞活动饭店策划方案(3篇)
- 博白深井施工方案(3篇)
- 日本坑人施工方案(3篇)
- 清洗锅炉施工方案(3篇)
- 砸高墙施工方案(3篇)
- 中国古代的制度创新的作用
- 2025年中职人工智能管理(管理技术)试题及答案
- 甲方土建工程师述职报告
- 基于多源数据融合与智能算法的存量房交易价格评估系统构建与实践
- 2025至2030磁悬浮空压机行业项目调研及市场前景预测评估报告
- 2025-2026学年北师大版二年级上册数学期末试卷及答案(三套)
- 放射科放射影像诊断演练培训
- 全国公路养护标准操作手册
- (2025年)(新)住院医师麻醉科出科考试试题(+答案)
- 污水处理厂废水污染源追溯与溯源技术
- T-CAPC 004-2021 药品经营企业物流服务能力评估标准
- 2025年事业单位联考e类结构化面试试题及答案
- YDT 5102-2024 通信线路工程技术规范
评论
0/150
提交评论