版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省襄州区四校数学高三第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.2.若某几何体的三视图如图所示,则该几何体的表面积为()A.240 B.264 C.274 D.2823.己知全集为实数集R,集合A={x|x2+2x-8>0},B={x|log2x<1},则等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)4.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.25.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.6.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.7.已知复数满足,则的值为()A. B. C. D.28.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为()A. B. C. D.9.若点是角的终边上一点,则()A. B. C. D.10.若复数z满足,则复数z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A. B. C. D.12.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若正实数x,y,满足x+2y=5,则x214.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.15.已知是第二象限角,且,,则____.16.设满足约束条件且的最小值为7,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如下:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量的分布列和数学期望.18.(12分)第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.分类意识强分类意识弱合计试点后试点前合计已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望.参考公式:,其中.下面的临界值表仅供参考19.(12分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.20.(12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:处罚金额(单位:元)5101520会闯红灯的人数50402010若用表中数据所得频率代替概率.(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?21.(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量x(单位:亿元)对年销售额y(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中现该公司收集了近12年的年研发资金投入量xi和年销售额yi的数据,i=1,2,⋯,12,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)设ui和yi的相关系数为r1,xi和(2)(i)根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);(ii)若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?附:①相关系数r=i=1n(xi-x②参考数据:308=4×77,90≈9.4868,e22.(10分)若正数满足,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.2、B【解析】
将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,,,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题3、D【解析】
求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【详解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
则,
∴.
故选:D.【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.4、C【解析】
由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.5、A【解析】
若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.6、C【解析】
由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.7、C【解析】
由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.8、B【解析】
计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.9、A【解析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解析】
化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.11、B【解析】
依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【点睛】本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题12、A【解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】
分析:将题中的式子进行整理,将x+1当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果.详解:x2-3x+1+2点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-------相乘,即可得结果.14、20,21【解析】
由题意知数列奇数项和偶数项分别为等差数列和等比数列,则根据为奇数和为偶数分别算出求和公式,代入数值检验即可.【详解】解:由题意知数列的奇数项构成公差为的等差数列,偶数项构成公比为的等比数列,则;.当时,,.当时,,.由此可知,满足的正整数的所有取值为20,21.故答案为:20,21【点睛】本题考查等差数列与等比数列通项与求和公式,是综合题,分清奇数项和偶数项是解题的关键.15、【解析】
由是第二象限角,且,可得,由及两角和的正切公式可得的值.【详解】解:由是第二象限角,且,可得,,由,可得,代入,可得,故答案为:.【点睛】本题主要考查同角三角函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.16、3【解析】
根据约束条件画出可行域,再把目标函数转化为,对参数a分类讨论,当时显然不满足题意;当时,直线经过可行域中的点A时,截距最小,即z有最小值,再由最小值为7,得出结果;当时,的截距没有最小值,即z没有最小值;当时,的截距没有最大值,即z没有最小值,综上可得出结果.【详解】根据约束条件画出可行域如下:由,可得出交点,由可得,当时显然不满足题意;当即时,由可行域可知当直线经过可行域中的点A时,截距最小,即z有最小值,即,解得或(舍);当即时,由可行域可知的截距没有最小值,即z没有最小值;当即时,根据可行域可知的截距没有最大值,即z没有最小值.综上可知满足条件时.故答案为:3.【点睛】本题主要考查线性规划问题,约束条件和目标函数中都有参数,要对参数进行讨论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析,【解析】
(1)采用分层抽样的方法甲组抽取4人,乙组抽取3人,丙组抽取2人,丁组抽取3人,从参加问卷调查的12名学生中随机抽取2人,基本事件总数为,这两人来自同一小组取法共有,由此可求出所求的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,而甲、丙两个小组学生分别有4人和2人,所以抽取的两人中是甲组的学生的人数的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.【详解】(1)由题设易得,问卷调查从四个小组中抽取的人数分别为4,3,2,3(人),从参加问卷调查的12名学生中随机抽取两名的取法共有(种),抽取的两名学生来自同一小组的取法共有(种),所以,抽取的两名学生来自同一个小组的概率为(2)由(1)知,在参加问卷调查的12名学生中,来自甲、丙两小组的学生人数分别为4人、2人,所以,抽取的两人中是甲组的学生的人数的可能取值为0,1,2,因为所以随机变量的分布列为:012所求的期望为【点睛】此题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查分层抽样、古典概型、排列组合等知识,考查运算能力,属于中档题.18、(1)有的把握认为居民分类意识强与政府宣传普及工作有很大关系.见解析(2)分布列见解析,期望为1.【解析】
(1)由在抽取的户居民中随机抽取户,抽到分类意识强的概率为可得列联表,然后计算后可得结论;(2)由已知的取值分别为,分别计算概率得分布列,由公式计算出期望.【详解】解:(1)根据在抽取的户居民中随机抽取户,到分类意识强的概率为,可得分类意识强的有户,故可得列联表如下:分类意识强分类意识弱合计试点后试点前合计因为的观测值,所以有的把握认为居民分类意识强与政府宣传普及工作有很大关系.(2)现在从试点前分类意识强的户居民中,选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,则0,1,2,3,故,,,,则的分布列为.【点睛】本题考查独立性检验,考查随机变量的概率分布列和数学期望.考查学生的数据处理能力和运算求解能力.19、(1);(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可求得函数的单调递增区间;(2)由求得,利用余弦定理结合基本不等式求出的取值范围,再结合三角形的面积公式可求得面积的取值范围.【详解】(1),解不等式,解得.因此,函数的单调递增区间为;(2)由题意,则,,,,解得.由余弦定理得,又,,当且仅当时取等号,所以,的面积.【点睛】本题考查正弦型函数单调区间的求解,同时也考查了三角形面积取值范围的计算,涉及余弦定理和基本不等式的应用,考查计算能力,属于中等题.20、(1)降低(2)【解析】
(1)计算出罚金定为10元时行人闯红灯的概率,和不进行处罚时行人闯红灯的概率,求解即可;(2)闯红灯的市民有80人,其中类市民和类市民各有40人,根据分层抽样法抽出4人依次排序,计算所求的概率值.【详解】解:(1)当罚金定为10元时,行人闯红灯的概率为;不进行处罚,行人闯红灯的概率为;所以当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低;(2)由题可知,闯红灯的市民有80人,类市民和类市民各有40人故分别从类市民和类市民各抽出两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年郑州市中原银行农村普惠金融支付服务点招聘备考题库及1套完整答案详解
- 旅馆治安管理制度
- 2025年兴业银行拉萨分行社会招聘备考题库及答案详解参考
- 2025年为枣庄市检察机关公开招聘聘用制书记员的备考题库及完整答案详解一套
- 黑龙江公安警官职业学院《英语口语》2025 学年第二学期期末试卷
- c语言课程设计纸牌代码
- 2025河南信阳艺术职业学院招才引智招聘专业技术人员32人备考核心题库及答案解析
- c语言课程设计大数阶乘
- 2025湖北武汉人才招聘工作人员-派往武汉商学院工作1人笔试重点题库及答案解析
- 2025年扬州市江都妇幼保健院公开招聘编外合同制专业技术人员备考题库及参考答案详解
- 计算机讲义-图灵测试课件
- 保护信息安全守卫个人隐私
- 23秋国家开放大学《汉语基础》期末大作业(课程论文)参考答案
- 高等数学(上)(长春工程学院)智慧树知到课后章节答案2023年下长春工程学院
- 关于建立英国常任文官制度的报告
- 2023年考研考博考博英语东北大学考试历年高频考试题专家版答案
- 商场保安队夜间清场安全检查制度
- 世界近代史超经典课件(北京大学)全版
- 马克思主义基本原理概论知到章节答案智慧树2023年北京师范大学等跨校共建
- 传感器与检测技术综合实训报告
- 电气交接试验方案设计
评论
0/150
提交评论