版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州市黄骅市2024届八上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列分式中,是最简分式的是()A. B. C. D.2.一次函数的图象可能是()A. B. C. D.3.如图,∠AOB=150°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE⊥OA于点E.若OD=4,则PE的长为()A.2 B.2.5 C.3 D.44.如图,已知,,与交于点,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和② B.②和③ C.①和③ D.①、②和③5.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a2﹣b2=(a﹣b)26.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4 B.5 C.6 D.87.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A. B.C. D.8.如图,在和中,连接AC,BD交于点M,AC与OD相交于E,BD与OA相较于F,连接OM,则下列结论中:①;②;③;④MO平分,正确的个数有()A.4个 B.3个 C.2个 D.1个9.四根小棒的长分别是5,9,12,13,从中选择三根小棒首尾相接,搭成边长如下的四个三角形,其中是直角三角形的是()A.5,9,12 B.5,9,13 C.5,12,13 D.9,12,1310.对于任意三角形的高,下列说法不正确的是()A.锐角三角形的三条高交于一点B.直角三角形只有一条高C.三角形三条高的交点不一定在三角形内D.钝角三角形有两条高在三角形的外部二、填空题(每小题3分,共24分)11.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.12.的平方根是_________.13.如图,在中,,,点的坐标为,点的坐标为,点的坐标是__________.14.如图,四边形ABCD,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD的面积为___________.15.要使分式有意义,则x的取值范围是_______________.16.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.17.若有(x﹣3)0=1成立,则x应满足条件_____.18.若A(2,b),B(a,-3)两点关于y轴对称,则a-b=_______.三、解答题(共66分)19.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级DCBA人数3a8b分析数据:平均数中位数众数80mn请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?20.(6分)△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)求△A1B1C1的面积.21.(6分)已知的平方根是,3是的算术平方根,求的立方根.22.(8分)如图所示,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OCD,连接AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?23.(8分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班1009811089103500乙班891009511997500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(8分)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)mm-3月处理污水量(吨/台)220180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.25.(10分)计算:(1)2ab2c(2)先化简,再求值:(2x-1﹣1)•x226.(10分)两个一次函数l1、l2的图象如图:(1)分别求出l1、l2两条直线的函数关系式;(2)求出两直线与y轴围成的△ABP的面积;(3)观察图象:请直接写出当x满足什么条件时,l1的图象在l2的下方.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据最简分式的定义:一个分式的分子与分母没有公因式时叫最简分式,逐一判断即可.【详解】A.,不是最简分式,故本选项不符合题意;B.,不是最简分式,故本选项不符合题意;C.,不是最简分式,故本选项不符合题意;D.是最简分式,故本选项符合题意.故选D.【点睛】此题考查的是最简分式的判断,掌握最简分式的定义和公因式的定义是解决此题的关键.2、A【分析】根据一次函数的图象与系数的关系进行解答即可【详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A正确.故选A.【点睛】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.3、A【解析】分析:根据平行线的性质,可得∠PDO的度数,然后过O作OF⊥PD于F,根据平行线的推论和30°角所在的直角三角形的性质可求解.详解:∵PD∥OA,∠AOB=150°∴∠PDO+∠AOB=180°∴∠PDO=30°过O作OF⊥PD于F∵OD=4∴OF=×OD=2∵PE⊥OA∴FO=PE=2.故选A.点睛:此题主要考查了直角三角形的性质,关键是通过作辅助线,利用平行线的性质和推论求出FO=PE.4、D【分析】按照已知图形,证明,得到;证明,证明,得到,即可解决问题;【详解】如图所示,在△ABE和△ACF中,,∴,∴,∵,,∴,在△CDE和△BDF中,,∴,∴DC=DB,在△ADC和△ADB中,,∴,∴.综上所述:①②③正确;故选D.【点睛】本题主要考查了全等三角形的性质与判定,准确判断是解题的关键.5、A【解析】分析:(1)中的面积=a2-b2,(2)中梯形的面积=(2a+2b)(a-b)÷2=(a+b)(a-b),两图形阴影面积相等,据此即可解答.解答:解:由题可得:a2-b2=(a+b)(a-b).故选A.6、B【分析】先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得.【详解】解:根据题意,此正多边形的边数为360°÷45°=8,则该正多边形从一个顶点出发的对角线的条数为:8﹣3=5(条).故选:B.【点睛】本题主要考查了多边形的对角线,多边形的外角和定理,n边形从一个顶点出发可引出(n−3)条对角线.7、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,
B、图形是轴对称图形,
C、图形是轴对称图形,也是中心对称轴图形,
D、图形是轴对称图形.
故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确;
由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=30°,②正确;
作OG⊥MC于G,OH⊥MB于H,则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH,得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确;
由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论.【详解】解:,∴,即,在和中,,,,,①正确;,由三角形的外角性质得:,,②正确;作于,于,如图所示:则,在和中,,,,平分,④正确;∵∠AOB=∠COD,
∴当∠DOM=∠AOM时,OM才平分∠BOC,
假设∠DOM=∠AOM,
∵△AOC≌△BOD,
∴∠COM=∠BOM,
∵MO平分∠BMC,
∴∠CMO=∠BMO,
在△COM和△BOM中,,∴△COM≌△BOM(ASA),
∴OB=OC,
∵OA=OB
∴OA=OC
与OA>OC矛盾,
∴③错误;正确的个数有3个;故选择:.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.9、C【分析】当一个三角形中,两个较小边的平方和等于较大边的平方,则这个三角形是直角三角形.据此进行求解即可.【详解】A、52+92=106≠122=144,故不能构成直角三角形;B、52+92=106≠132=169,故不能构成直角三角形;C、52+122=169=132,故能构成直角三角形;D、92+122=225≠132=169,故不能构成直角三角形,故选C.10、B【分析】根据三角形的高的概念,通过具体作高,发现:任意一个三角形都有三条高,其中锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部,据此解答即可.【详解】解:A、锐角三角形的三条高交于一点,说法正确,故本选项不符合题意;
B、直角三角形有三条高,说法错误,故本选项符合题意;
C、三角形三条高的交点不一定在三角形内,说法正确,故本选项不符合题意;
D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;
故选:B.【点睛】本题考查了三角形的高:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,注意不同形状的三角形的高的位置.二、填空题(每小题3分,共24分)11、1.【解析】首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.【详解】2x﹣a≤﹣1,x≤,∵解集是x≤1,∴=1,解得:a=1,故答案为1.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.12、【分析】先根据算术平方根的定义得到,然后根据平方根的定义求出8的平方根.【详解】解:,的平方根为,故答案为.【点睛】本题考查了平方根的定义:若一个数的平方等于,那么这个数叫的平方根,记作.13、(1,6)【分析】过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.【详解】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,
∵∠ACB=90°,
∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ADC和△CEB中,
∵,
∴△ADC≌△CEB(AAS),
∴DC=BE,AD=CE,
∵点C的坐标为(-2,0),点A的坐标为(-8,3),
∴OC=2,AD=CE=3,OD=8,
∴CD=OD-OC=6,OE=CE-OC=3-2=1,
∴BE=6,
∴则B点的坐标是(1,6)
故答案为(1,6)【点睛】本题借助于坐标与图形性质,重点考查了直角三角形的性质、全等三角形的判定和性质,解题的关键是做高线构造全等三角形.14、36【分析】连接BD,先根据勾股定理求出BD的长,再根据勾股定理的逆定理判断出△BCD的形状,根据=即可得出结论.【详解】连接BD.∵∠A=90°,AB=3,DA=4,∴BD==5在△BCD中,∵BD=5,CD=12,BC=13,,即,∴△BCD是直角三角形,∴==,故答案为:36.【点睛】此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.15、【解析】根据分式有意义的条件,则:解得:故答案为【点睛】分式有意义的条件:分母不为零.16、1【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为1.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.17、x≠1【分析】便可推导.【详解】解:根据题意得:x﹣1≠0,解得:x≠1.故答案是:x≠1.【点睛】掌握0次方成立的意义为本题的关键.18、2【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a=-2.b=-3,然后再计算出a-b即可.【详解】解:∵若A(2,b),B(a,-3)两点关于y轴对称,
∴a=-2.b=-3,
∴a-b=-2-(-3)=2,
故答案为:2.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.三、解答题(共66分)19、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【详解】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点睛】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.20、(1)见解析;(2)6.2【分析】(1)作出△ABC各个顶点关于y轴对称的对应点,顺次连接起来,即可;(2)利用△A1B1C1所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:3×2﹣×1×2﹣×2×3﹣×2×3=6.2.【点睛】本题主要考查图形的轴对称变换,掌握轴对称变换的定义以及割补法求面积,是解题的关键.21、1【分析】利用平方根,算术平方根定义求出与的值,进而求出的值,利用立方根定义计算即可求出值.【详解】解:根据题意得:,,解得:,,即,27的立方根是1,即的立方根是1.【点睛】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.22、(1)△AOD是直角三角形;(2)当α为110°、125°、140°时,三角形AOD是等腰三角形.【解析】试题分析:(1)首先根据已知条件可以证明△BOC≌△ADC,然后利用全等三角形的性质可以求出∠ADO的度数,由此即可判定△AOD的形状;(2)利用(1)和已知条件及等腰三角形的性质即可求解.试题解析:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,在△BOC与△ADC中,∵,∴△BOC≌△ADC,∴∠BOC=∠ADC,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°-60°=90°,∴△ADO是直角三角形;(2)∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°-110°=70°,c+d=60°,a+d=50°∠DAO=50°,∴b-d=10°,∴(60°-a)-d=10°,∴a+d=50°,即∠CAO=50°,①要使AO=AD,需∠AOD=∠ADO,∴190°-α=α-60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∴α-60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD,∴190°-α=50°,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质;3.等腰三角形的判定.23、(1)60%;40%;(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97;(3)46.8;103.2;(4)应把冠军奖状给甲班.【分析】(1)确定两个班级优秀的人数,利用优秀率计算公式即可得到答案;(2)将两个班级的成绩由低到高重新排列,中间的数即为中位数;(3)根据方差公式计算即可;(4)将优秀率、中位数、方差进行比较即可得到答案.【详解】(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%;(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.=[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;=[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.【点睛】此题考查数据的分析,正确掌握优秀率、方差的计算公式,并熟练运用解题是关键.24、(1)m=18;(2)有3种购买方案,每月最多处理污水量的吨数为1880吨.【解析】(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出m的分式方程,求出m的值即可;
(2)设买A型污水处理设备x台,B型则(10-x)台,根据题意列出x的一元一次不等式,求出x的取值范围,进而得出方案的个数,并求出最大值.【详解】(1)由90万元购买A型号的污水处理设备的台数与用7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年广元中核职业技术学院高职单招职业适应性考试备考题库有答案解析
- 2026年河南职业技术学院高职单招职业适应性测试参考题库带答案解析
- 2026年巴音郭楞职业技术学院单招职业技能考试备考题库带答案解析
- 2026年巴中职业技术学院单招综合素质笔试备考题库带答案解析
- 2026年广西培贤国际职业学院单招综合素质考试参考题库带答案解析
- 碳中和认证代理协议(企业)2025年年度计划
- 2026年深圳职业技术学院单招综合素质笔试备考题库附答案详解
- 2026年白银矿冶职业技术学院单招综合素质考试参考题库带答案解析
- 2026年河北司法警官职业学院单招综合素质笔试模拟试题带答案解析
- 2026年广西体育高等专科学校高职单招职业适应性测试备考题库有答案解析
- 国家开放大学《刑事诉讼法学》形考任务2答案
- Python爬虫介绍课件
- 乡镇避孕药具培训资料
- 履带吊课件教学课件
- 煤矿返岗培训课件
- 医院法律法规专项培训实施计划方案
- 反渗透膜性能检测与维护流程
- 数字藏品授权协议书
- 头晕中西医课件
- 总经理2025年度总结参考(六篇)
- DB22∕T 3648-2024 取水井封井技术规范
评论
0/150
提交评论