




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省长阳县第一高级中学高三下学期月考试卷(五)数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.2.双曲线的渐近线方程为()A. B. C. D.3.已知,则的值等于()A. B. C. D.4.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.5.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.76.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=A.3 B.2C.3 D.67.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.8.已知集合,,若,则的最小值为()A.1 B.2 C.3 D.49.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.210.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.11.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A. B. C. D.12.若点是角的终边上一点,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在区间上的值域为______.14.若非零向量,满足,,,则______.15.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.16.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上,的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.18.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.19.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)20.(12分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.21.(12分)已知在四棱锥中,平面,,在四边形中,,,,为的中点,连接,为的中点,连接.(1)求证:.(2)求二面角的余弦值.22.(10分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30cm,宽26cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为xcm和ycm,窗芯所需条形木料的长度之和为L.(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2cm,每个菱形的面积为130cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【题目详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【题目点拨】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.2、C【解题分析】
根据双曲线的标准方程,即可写出渐近线方程.【题目详解】双曲线,双曲线的渐近线方程为,故选:C【题目点拨】本题主要考查了双曲线的简单几何性质,属于容易题.3、A【解题分析】
由余弦公式的二倍角可得,,再由诱导公式有,所以【题目详解】∵∴由余弦公式的二倍角展开式有又∵∴故选:A【题目点拨】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题4、B【解题分析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【题目详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【题目点拨】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.5、B【解题分析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【题目详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【题目点拨】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.6、A【解题分析】
由圆心到渐近线的距离等于半径列方程求解即可.【题目详解】双曲线的渐近线方程为y=±22x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=±答案:A【题目点拨】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.7、B【解题分析】
利用等差数列性质,若,则求出,再利用等差数列前项和公式得【题目详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【题目点拨】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.8、B【解题分析】
解出,分别代入选项中的值进行验证.【题目详解】解:,.当时,,此时不成立.当时,,此时成立,符合题意.故选:B.【题目点拨】本题考查了不等式的解法,考查了集合的关系.9、B【解题分析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【题目详解】解:,一条渐近线,故选:B【题目点拨】利用的关系求双曲线的离心率,是基础题.10、A【解题分析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【题目详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【题目点拨】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.11、A【解题分析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【题目详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【题目点拨】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.12、A【解题分析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【题目详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【题目点拨】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【题目详解】,,则,.故答案为:.【题目点拨】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.14、1【解题分析】
根据向量的模长公式以及数量积公式,得出,解方程即可得出答案.【题目详解】,即解得或(舍)故答案为:【题目点拨】本题主要考查了向量的数量积公式以及模长公式的应用,属于中档题.15、【解题分析】
记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:,由条件概率公式即得解.【题目详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:故答案为:【题目点拨】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.16、20.2【解题分析】
分别求出随机变量ξ1和ξ2的分布列,根据期望和方差公式计算得解.【题目详解】设a,b∈{1,2,1,4,5},则p(ξ1=a),其ξ1分布列为:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分别为:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案为:2,0.2.【题目点拨】此题考查随机变量及其分布,关键在于准确求出随机变量取值的概率,根据公式准确计算期望和方差.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】
(1)由,周长,解得,即可求得标准方程.(2)通过特殊情况的斜率不存在时,求得,再证明的斜率存在时,即可证得为定值.通过设直线的方程为与椭圆方程联立,借助韦达定理求得,利用直线与圆相切,即,求得的关系代入,化简即可证得即可证得结论.【题目详解】(1)由题意得,周长,且.联立解得,,所以椭圆C的标准方程为.(2)①当直线l的斜率不存在时,不妨设其方程为,则,所以,即.②当直线l的斜率存在时,设其方程为,并设,由,,,由直线l与圆E相切,得.所以.从而,即.综合上述,得为定值.【题目点拨】本题考查了椭圆的标准方程,直线与椭圆的位置关系中定值问题,考查了学生计算求解能力,难度较难.18、(1)详见解析;(2)详见解析.【解题分析】
(1)连结根据中位线的性质证明即可.(2)证明,再证明平面即可.【题目详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,,,平面平面,平面平面.【题目点拨】本题主要考查了线面平行与垂直的判定,属于基础题.19、(Ⅰ)分布列见解析,;(Ⅱ);(Ⅲ)至少增加2人.【解题分析】
(Ⅰ)求出X的所有可能取值为9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)当P(a≤X≤b)取到最大值时,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前两问的结果,判断至少增加2人.【题目详解】(Ⅰ)X的取值为:9,12,15,18,24;,,,,,X的分布列为:X912151824P故X的数学期望;(Ⅱ)当P(a≤X≤b)取到最大值时,a,b的值可能为:,或,或.经计算,,,所以P(a≤X≤b)的最大值为.(Ⅲ)至少增加2人.【题目点拨】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.20、(1)证明见解析(2)【解题分析】
(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【题目详解】(1)证明:分别取,的中点,,连接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论