




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省泰安一中2024届高三5月四校联考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.2.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A. B.C. D.3.设函数,则,的大致图象大致是的()A. B.C. D.4.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A. B.C. D.5.已知等差数列中,则()A.10 B.16 C.20 D.246.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.7.已知集合,,,则()A. B. C. D.8.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是()A. B. C. D.9.已知变量,满足不等式组,则的最小值为()A. B. C. D.10.已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为()A. B. C. D.11.若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为()A.2 B. C. D.12.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则最小值为__________.14.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.15.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.16.若,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.(1)若家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以领取一台全自动洗衣机的概率是多少?(2)张明和王慧他们家庭两轮游戏得积分之和的分布列和数学期望.18.(12分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.19.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.20.(12分)如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.21.(12分)已知函数.(Ⅰ)求的值;(Ⅱ)若,且,求的值.22.(10分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点.(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【题目详解】因为复数z满足,所以,所以z的虚部为.故选:D.【题目点拨】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.2、B【解题分析】
依照偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x),且定义域关于原点对称,a﹣1=﹣2a,即可得解.【题目详解】根据偶函数的定义域关于原点对称,且f(x)是定义在[a–1,2a]上的偶函数,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故选B.【题目点拨】本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数.3、B【解题分析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【题目详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【题目点拨】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.4、B【解题分析】
设,则,,因为,所以.若,则,所以,所以,不符合题意,所以,则,所以,所以,,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率.故选B.5、C【解题分析】
根据等差数列性质得到,再计算得到答案.【题目详解】已知等差数列中,故答案选C【题目点拨】本题考查了等差数列的性质,是数列的常考题型.6、D【解题分析】
设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【题目详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【题目点拨】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法7、A【解题分析】
求得集合中函数的值域,由此求得,进而求得.【题目详解】由,得,所以,所以.故选:A【题目点拨】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.8、C【解题分析】
根据题目中的基底定义求解.【题目详解】因为,,,,,,所以能作为集合的基底,故选:C【题目点拨】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.9、B【解题分析】
先根据约束条件画出可行域,再利用几何意义求最值.【题目详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【题目点拨】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.10、A【解题分析】
根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【题目详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,∴,即:,,所以双曲线的渐近线方程为:.故选:A.【题目点拨】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.11、B【解题分析】
由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【题目详解】双曲线的一条渐近线与直线垂直.∴双曲线的渐近线方程为.,得.则离心率.故选:B【题目点拨】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.12、A【解题分析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【题目详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【题目点拨】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【题目详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【题目点拨】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14、10【解题分析】
作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.15、【解题分析】
求函数的导数,利用导数的几何意义即可求出切线方程.【题目详解】解:∵,
∴,
则,
又,即切点坐标为(1,0),
则函数在点(1,f(1))处的切线方程为,
即,
故答案为:.【题目点拨】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.16、【解题分析】
因为,所以,又,所以,则,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析【解题分析】
(1)要积分超过分,则需两人共击中次,或者击中次,由此利用相互独立事件概率计算公式,计算出所求概率.(2)求得的所有可能取值,根据相互独立事件概率计算公式,计算出分布列并求得数学期望.【题目详解】(1)由题意,当家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,所以要想领取一台全自动洗衣机,则需要这个家庭夫妻俩在两轮游戏中至少击中三次鼓.设事件为“张明第次击中”,事件为“王慧第次击中”,,由事件的独立性和互斥性可得(张明和王慧家庭至少击中三次鼓),所以张明和王慧他们家庭可以领取一台全自动洗衣机的概率是.(2)的所有可能的取值为-200,-50,100,250,400.,,,,.∴的分布列为-200-50100250400∴(分)【题目点拨】本小题考查概率,分布列,数学期望等概率与统计的基础知识;考查运算求解能力,推理论证能力,数据处理,应用意识.18、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)求函数的导函数,即可求得切线的斜率,则切线方程得解;(Ⅱ)构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【题目详解】(Ⅰ)当时,,则.所以.又,故所求切线方程为,即.(Ⅱ)依题意,得,即恒成立.令,则.①当时,因为,不合题意.②当时,令,得,,显然.令,得或;令,得.所以函数的单调递增区间是,,单调递减区间是.当时,,,所以,只需,所以,所以实数的取值范围为.【题目点拨】本题考查利用导数的几何意义求切线方程,以及利用导数研究恒成立问题,属综合中档题.19、(1)乙同学正确(2)分布列见解析,【解题分析】
(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.【题目详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:“理想数据”有3个,故“理想数据”的个数的取值为:.,,于是“理想数据”的个数的分布列【题目点拨】本题考查样本回归中心点与线性回归直线方程关系,以及离散型随机变量的分布列和期望,意在考查逻辑推理、数学计算能力,属于中档题.20、(1)见解析;(2)【解题分析】
(1)先算出的长度,利用勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.【题目详解】(1)在中,,由余弦定理得,∴,∴,由题意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以为坐标原点,以,,的方向为,,轴的正方向,建立空间直角坐标系.∵平面,∴在平面上的射影是,∴与平面所成的角是,∴最大时,即,点为中点.,,,,,,,设平面的法向量,由,得,令,得,所以平面的法向量,同理,设平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值为.【题目点拨】本题考查线面垂直的判定定理以及利用向量法求二面角的正弦值,考查学生的运算求解能力,是一道中档题.21、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)直接代入再由诱导公式计算可得;(Ⅱ)先得到,再根据利用两角差的余弦公式计算可得.【题目详解】解:(Ⅰ);(Ⅱ)因为所以,由得,又因为,故,所以,所以.【题目点拨】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年零售行业线上线下价格联动策略报告
- 咖啡连锁品牌扩张战略与2025年市场细分领域布局创新研究报告
- 2025年乳制品行业奶源质量控制技术创新与品牌塑造研究报告
- 2025年云计算服务在农业信息化中的应用与发展趋势研究报告
- 2025年智能家居互联互通标准下的智能设备兼容性研究报告
- 2023届高三物理复习重难点突破专题10受力分析 整体法隔离法(原卷版)
- (2021-2023)高考英语真题分项汇编 专题20 读后续写(新高考) 含解析
- 2025年社区零售业态创新与数字化运营模式创新趋势分析报告
- 2025年电子竞技赛事赞助市场深度洞察:品牌合作策略与赛事营销报告
- 交强险AI应用行业跨境出海项目商业计划书
- 安徽省部分高中2025届高考生物四模试卷含解析
- 2025-2030全球及中国燃气轮机服务行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 初中学生安全教育课件
- 项目平行分包协议书范本
- 让空气更清新(教学课件)五年级科学下册(青岛版)
- 2025-2030自愿碳信用交易行业市场现状供需分析及投资评估规划分析研究报告
- 轮式拖拉机的设计计算书
- 2025年中国办公椅数据监测研究报告
- 自动驾驶车辆的远程监控与维护系统-全面剖析
- 排他协议合同协议
- 物联网工程技术考研真题卷100道及答案
评论
0/150
提交评论