版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆喀什市深喀第一高级中学高三下学期二测模拟一数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,,则“的图象关于轴对称”是“是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米 B.米C.米 D.米3.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是()A. B. C. D.4.()A. B. C. D.5.某几何体的三视图如图所示,则该几何体的体积为()A. B.3 C. D.46.已知集合,,若AB,则实数的取值范围是()A. B. C. D.7.射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为()(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,,结果精确到0.001)A.0.110 B.0.112 C. D.8.展开式中x2的系数为()A.-1280 B.4864 C.-4864 D.12809.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.3610.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能11.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若函数在时取得极值,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在处的切线斜率为________.14.已知抛物线的焦点为,斜率为的直线过且与抛物线交于两点,为坐标原点,若在第一象限,那么_______________.15.双曲线的焦点坐标是_______________,渐近线方程是_______________.16.已知随机变量,且,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设前项积为的数列,(为常数),且是等差数列.(I)求的值及数列的通项公式;(Ⅱ)设是数列的前项和,且,求的最小值.18.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)求证:在上存在唯一的极大值;(Ⅲ)直接写出函数在上的零点个数.19.(12分)已知,函数.(Ⅰ)若在区间上单调递增,求的值;(Ⅱ)若恒成立,求的最大值.(参考数据:)20.(12分)如图,在等腰梯形中,AD∥BC,,,,,分别为,,的中点,以为折痕将折起,使点到达点位置(平面).(1)若为直线上任意一点,证明:MH∥平面;(2)若直线与直线所成角为,求二面角的余弦值.21.(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.22.(10分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.【题目详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【题目点拨】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.2、D【解题分析】
根据题意,是一个等比数列模型,设,由,解得,再求和.【题目详解】根据题意,这是一个等比数列模型,设,所以,解得,所以.故选:D【题目点拨】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.3、B【解题分析】
由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【题目详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【题目点拨】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.4、B【解题分析】
利用复数代数形式的乘除运算化简得答案.【题目详解】.故选B.【题目点拨】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.5、C【解题分析】
首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【题目详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【题目点拨】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.6、D【解题分析】
先化简,再根据,且AB求解.【题目详解】因为,又因为,且AB,所以.故选:D【题目点拨】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.7、C【解题分析】
根据题意知,,代入公式,求出即可.【题目详解】由题意可得,因为,所以,即.所以这种射线的吸收系数为.故选:C【题目点拨】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.8、A【解题分析】
根据二项式展开式的公式得到具体为:化简求值即可.【题目详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:化简得到-1280x2故得到答案为:A.【题目点拨】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.9、B【解题分析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.10、B【解题分析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【题目详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【题目点拨】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.11、D【解题分析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【题目详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【题目点拨】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.12、D【解题分析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.【题目详解】因为,所以,又函数在时取得极值,所以,解得.故选D【题目点拨】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求导后代入可构造方程求得,即为所求斜率.【题目详解】,,解得:,即在处的切线斜率为.故答案为:.【题目点拨】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.14、2【解题分析】
如图所示,先证明,再利用抛物线的定义和相似得到.【题目详解】由题得,.因为.所以,过点A、B分别作准线的垂线,垂足分别为M,N,过点B作于点E,设|BF|=m,|AF|=n,则|BN|=m,|AM|=n,所以|AE|=n-m,因为,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案为:2【题目点拨】本题主要考查直线和抛物线的位置关系,考查抛物线的定义,意在考查学生对这些知识的理解掌握水平.15、【解题分析】
通过双曲线的标准方程,求解,,即可得到所求的结果.【题目详解】由双曲线,可得,,则,所以双曲线的焦点坐标是,渐近线方程为:.故答案为:;.【题目点拨】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题.16、0.1【解题分析】
根据原则,可得,简单计算,可得结果.【题目详解】由题可知:随机变量,则期望为所以故答案为:【题目点拨】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ)【解题分析】
(Ⅰ)当时,由,得到,两边同除以,得到.再根据是等差数列.求解.(Ⅱ),根据前n项和的定义得到,令,研究其增减性即可.【题目详解】(Ⅰ)当时,,所以,即,所以.因为是等差数列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以数列是递增数列,所以,即.【题目点拨】本题主要考查等差数列的定义,前n项和以及数列的增减性,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)函数在有3个零点.【解题分析】
(Ⅰ)求出导数,写出切线方程;(Ⅱ)二次求导,判断单调递减,结合零点存在性定理,判断即可;(Ⅲ),数形结合得出结论.【题目详解】解:(Ⅰ),,,故在点,处的切线方程为,即;(Ⅱ)证明:,,,故在递减,又,,由零点存在性定理,存在唯一一个零点,,当时,递增;当时,递减,故在只有唯一的一个极大值;(Ⅲ)函数在有3个零点.【题目点拨】本题主要考查利用导数求切线方程,考查零点存在性定理的应用,关键是能够通过导函数的单调性和零点存在定理确定导函数的零点个数,进而确定函数的单调性,属于难题.19、(Ⅰ);(Ⅱ)3.【解题分析】
(Ⅰ)先求导,得,已知导函数单调递增,又在区间上单调递增,故,令,求得,讨论得,而,故,进而得解;(Ⅱ)可通过必要性探路,当时,由知,又由于,则,当,,结合零点存在定理可判断必存在使得,得,,化简得,再由二次函数性质即可求证;【题目详解】(Ⅰ)的定义域为.易知单调递增,由题意有.令,则.令得.所以当时,单调递增;当时,单调递减.所以,而又有,因此,所以.(Ⅱ)由知,又由于,则.下面证明符合条件.若.所以.易知单调递增,而,,因此必存在使得,即.且当时,单调递减;当时,,单调递增;则.综上,的最大值为3.【题目点拨】本题考查导数的计算,利用导数研究函数的增减性和最值,属于中档题20、(1)见解析(2)【解题分析】
(1)根据中位线证明平面平面,即可证明MH∥平面;(2)以,,为,,轴建立空间直角坐标系,找到点的坐标代入公式即可计算二面角的余弦值.【题目详解】(1)证明:连接,∵,,分别为,,的中点,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)连接,在和中,由余弦定理可得,,由与互补,,,可解得,于是,∴,,∵,直线与直线所成角为,∴,又,∴,即,∴平面,∴平面平面,∵为中点,,∴平面,如图所示,分别以,,为,,轴建立空间直角坐标系,则,,,,.设平面的法向量为,∴,即.令,则,,可得平面的一个法向量为.又平面的一个法向量为,∴,∴二面角的余弦值为.【题目点拨】此题考查线面平行,建系通过坐标求二面角等知识点,属于一般性题目.21、(1);(2).【解题分析】
(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【题目详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【题目点拨】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 想买保障房申请书
- 2026年财务亮点与年度回顾黑金风
- 安顺公司变更法人申请书
- 2025年物流仓储管理优化与实施指南
- 执行矫正申请书
- 2026年新媒体在房地产交易中的影响力分析
- 2025年企业内部培训与竞争力提升手册
- 绘画合作社资金申请书
- 跨境贸易操作流程与规范手册(标准版)
- 企业平调申请书
- 能源行业人力资源开发新策略
- 工作照片拍摄培训课件
- 2025年海南三亚市吉阳区教育系统公开招聘编制教师122人(第1号)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库参考答案详解
- 临床诊断学:尿频、尿急、尿痛
- 中文版 API SPEC 5L-2018(2019) 管线钢管规范 第46th版
- JBT 12530.2-2015 塑料焊缝无损检测方法 第2部分:目视检测
- 养老院年终工作总结
- 加减乘除课件
- 我的家人初中写人记事作文600字10篇
- 2022公务员录用体检操作手册(试行)
评论
0/150
提交评论