高二数学(原创)人教A版数学-选择性-第七章随机变量及其分布-5正态分布_第1页
高二数学(原创)人教A版数学-选择性-第七章随机变量及其分布-5正态分布_第2页
高二数学(原创)人教A版数学-选择性-第七章随机变量及其分布-5正态分布_第3页
高二数学(原创)人教A版数学-选择性-第七章随机变量及其分布-5正态分布_第4页
高二数学(原创)人教A版数学-选择性-第七章随机变量及其分布-5正态分布_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高斯是一个伟大的数学家,一生中的重要贡献不胜枚举.德国的10马克纸币上印有高斯的头像和正态分布的曲线,这就传达了一个信息:在高斯的科学贡献中,对人类文明影响最大的是正态分布.那么,什么是正态分布?正态分布的曲线有什么特征?

你见过高尔顿板吗?如图所示的就是一块高尔顿板示意图.在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃.让一个个小球从高尔顿板上方的通道口落下,小球在下落过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内,只有球的数目相当大,它们在底板将组成近似中间高两头低,成左右对称的图形.上面的钉板试验给我们如下图的曲线这就是本节课我们学习的正态曲线,通过学习我们会掌握正态曲线的有关知识,用它来解决实际生产生活中的问题,好好学习吧.1.利用实际问题的直方图,了解正态曲线的特征和正态曲线所表示的意义.2.能借助正态曲线的图象理解正态曲线的性质及意义.3.会根据正态曲线的性质求随机变量在某一区间的概率.1.通过学习正态分布,体会数学抽象和直观想象的素养.2.借助“3σ”原则解题,提升数学运算的素养.课标要求素养要求

正态分布在统计学中是很重要的分布.我们知道,离散型随机变量最多取可列个不同值,它等于某一特定实数的概率可能大于0,人们感兴趣的是它取某些特定值的概率,即感兴趣的是其分布列;连续型随机变量可能取某个区间上的任何值,它等于任何一个实数的概率都为0,所以通常感兴趣的是它落在某个区间的概率。我们称这类随机变量为连续型随机变量(continuousrandomvariable).离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度函数(曲线)描述.探究点1正态分布

问题:自动流水线包装的食盐,每袋标准质量为400g.由于各种不可控的因素,任意抽取一袋食盐,它的质量与标准质量之间或多或少会存在一定的误差(实际质量减去标准质量).用X表示这种误差,则X是一个连续型随机变量.检测人员在一次产品检验中,随机抽取了100袋食盐,获得误差X(单位:g)的观测值如下:-0.6-1.4-0.73.3-2.9-5.21.40.14.40.9-2.6-3.4-0.7-3.2-1.72.90.61.72.91.20.5-3.72.71.1-3.0-2.6-1.91.72.60.42.6-2.0-0.21.8-0.7-1.3-0.5-1.30.2-2.12.4-1.5-0.43.8-0.11.50.3-1.80.02.53.5-4.2-1.0-0.20.10.91.12.20.9-0.6-4.4-1.13.9-1.0-0.61.70.3-2.4-0.1-1.7-0.5-0.81.71.44.41.2-1.8-3.1-2.1-1.62.20.34.8-0.8-3.5-2.73.81.4-3.5-0.9-2.2-0.7-1.31.5-1.5-2.21.01.31.7-0.9-0.6-1.4-0.73.3-2.9-5.21.40.14.40.9-2.6-3.4-0.7-3.2-1.72.90.61.72.91.20.5-3.72.71.1-3.0-2.6-1.91.72.60.42.6-2.0-0.21.8-0.7-1.3-0.5-1.30.2-2.12.4-1.5-0.43.8-0.11.50.3-1.80.02.53.5-4.2-1.0-0.20.10.91.12.20.9-0.6-4.4-1.13.9-1.0-0.61.70.3-2.4-0.1-1.7-0.5-0.81.71.44.41.2-1.8-3.1-2.1-1.62.20.34.8-0.8-3.5-2.73.81.4-3.5-0.9-2.2-0.7-1.31.5-1.5-2.21.01.31.7-0.9(1).如何描述这100个样本误差数据的分布?(2).如何构建适当的概率模型刻画误差X的分布?可用频率分布直方图描述这组误差数据的分布,如右图.所示.频率分布直方图中每个小矩形的面积表示误差落在相应区间内的频率,所有小矩形的面积之和为1.

误差观测值有正有负,并大致对称地分布在X=0的两侧,而且小误差比大误差出现得更频繁.根据频率与概率的关系,可用以用上图中的钟型曲线来描述袋装食盐质量误差的概率分布.曲线与水平轴之间的面积为1.

随着样本数据量越来越大,让分组越来越多,组距越来越小,由频率的稳定性可知,规率分布直方图的轮廓就越来越稳定,接近一条光滑的钟形曲线,如右图所示。任意抽取一袋盐,误差落在[-2,-1]内的概率如何表示?可以用图中黄色阴影部分的面积表示.正态密度曲线(简称正态曲线)0YX相应的函数解析式为:称为正态密度函数

对任意的x∈R,f(x)>0,它的图象在x轴的上方.可以证明xf(xX的概率分布密度函数为f(x),则称随机变量X服从正态分布(normaldis-tribution),记为X~N(u,σ2).正态分布的定义特别地,当u=0,σ=1时,称随机变量X服从标准正态分布.

若X~N(u,σ2),则如上图所示,X取值不超过x的概率P(X)为图中区域A的面积,而P(a≤X<b)为区域B的面积.y012-1-2x-33μ=0σ=1

正态分布在概率和统计中占有重要地位,它广泛存在于自然现象、生产和生活实践之中.在现实生活中,很多随机变量都服从或近似服从正态分布.

例如,某些物理量的测量误差某一地区同年龄人群的身高、体重、肺活量等一定条件下生长的小麦的株高、穗长、单位面积产量自动流水线生产的各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容)某地每年7月的平均气温、平均湿度、降水量等.一般都近似服从正态分布具有两头低、中间高、左右对称的基本特征012-1-2xy-3μ=-1σ=0.5012-1-2xy-33μ=0σ=1012-1-2xy-334μ=1σ=2思考:一个正态分布由参数μ和σ完全确定,这两个参数对正态曲线的形状有何影响?它们反映正态分布的哪些特征?探究点2正态曲线的性质012-1-2xy-3μ=-1σ=0.5012-1-2xy-33μ=0σ=1012-1-2xy-334μ=1σ=2(1)对称性:曲线是单峰的,它关于直线x=μ对称.(2)最值性:曲线在x=μ处达到峰值(最高点)(3)当|x|无限增大时,曲线无限接近x轴.当x∈(-∞,μ]时,为增函数.当x∈[μ,+∞)时,为减函数.值域为一个正态分布由参数μ和σ完全确定,这两个参数对正态曲线的形状有何影响?它们反映正态分布的哪些特征?探究点3参数μ,σ的含义及对正态曲线的形状的影响(1).当参数σ取定值时

3

1

2σ=1μ=-1μ=0

μ=1若σ固定,随μ值的变化而沿x轴平移,故μ称为位置参数;xy

=0.5

=1=2μ=0

若μ固定,σ大时,曲线“矮而胖”;σ小时,曲线“瘦而高”,故称σ为形状参数.

所以σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.xy(2).当参数μ取定值时X和骑自行车用时Y都服从正态分布.(1)估计X,Y的分布中的参数;(2)根据(1)中的估计结果,利用信息技术工具画出X和Y的分布密度曲线;(3)如果某天有38min可用,李明应选择哪种交通工具?如果某天只有34min可用,又应该选择哪种交通工具?请说明理由.26303438ty分析:对于第(1)问,正态分布由参数μ和σ完全确定,根据正态分布参数的意义可以分别用样本均值和样本标准差来估计.对于第(3)问,这是一个概率决策问题,首先要明确决策的准则,在给定的时间内选择不迟到概率大的交通工具;然后结合图形,相据概率的表示,比较概率的大小,作出判断26303438ty解:(1)随机变量X的样本均值为30,样本标准差为6;随机变量Y的样本均值为34,μ.用样本标准差估计参数σ,可以得到X~N(30,6),Y~N(34,2).(2)X和Y的分布密度曲线如图所示,(3)应选择在给定时间内不迟到的概率大的交通工具.由图可知,Y的密度曲线X的密度曲线P(X≤38)<P(Y≤38),P(X≤34)>P(Y≤34).所以,如果有38min可用,那么骑自行车不迟到的概率大,应选择骑自行车;如果只有34min可用,那么坐公交车不迟到的概率大,应选择坐公交车.26303438ty正态分布的3σ原则

尽管正态变量的取值范围是(−∞,+∞),但在一次试验中,x的取值几乎总落在区间[μ-3σ,μ+3σ]内,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论