版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春汽车经济技术开发区七校联考2023年数学八上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若,则的值为()A.5 B.0 C.3或-7 D.42.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=()A.10 B.5 C.4 D.33.把的图像沿轴向下平移5个单位后所得图象的关系式是()A. B. C. D.4.将两块完全一样(全等)的含的直角三角板按如图所示的方式放置,其中交点为和的中点,若,则点和点之间的距离为()A.2 B. C.1 D.5.如图,点是内任意一点,且,点和点分别是射线和射线上的动点,当周长取最小值时,则的度数为()A.145° B.110° C.100° D.70°6.已知:是线段外的两点,,点在直线上,若,则的长为()A. B. C. D.7.下列计算结果为a8的是()A.a2•a4 B.a16÷a2 C.a3+a5 D.(﹣a2)48.若ax=3,ay=2,则a2x+y等于()A.18 B.8 C.7 D.69.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20 B.30和25 C.30和22.5 D.30和17.510.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,已知中,,,垂直平分,点为垂足,交于点.那么的周长为__________.12.已知:在中,,垂足为点,若,,则______.13.若3a2﹣a﹣2=0,则5+2a﹣6a2=_____.14.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.15.在平面直角坐标系xOy中,O为坐标原点,A是反比例函数图象上的一点,AB垂直y轴,垂足为点B,那么的面积为___________.16.如图,等边三角形中,为的中点,平分,且交于.如果用“三角形三条角平分线必交于一点”来证明也一定平分,那么必须先要证明__________.17.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为_____.18.使式子有意义的的取值范围是______.三、解答题(共66分)19.(10分)如图①,点是等边内一点,,.以为边作等边三角形,连接.(1)求证:;(2)当时(如图②),试判断的形状,并说明理由;(3)求当是多少度时,是等腰三角形?(写出过程)20.(6分)计算:(1)(2)解分式方程21.(6分)先化简,再求值:y(x+y)+(x+y)(x﹣y)﹣x2,其中x=﹣2,y=.22.(8分)如图,等腰中,,,点、分别在边、的延长线上,,过点作于点,交于点.(1)若,求的度数;(2)若.求证:.23.(8分)在如图所示的平面直角坐标系中:(1)画出关于轴成轴对称图形的三角形;(2)分别写出(1)中的点,,的坐标;(3)求的面积.24.(8分)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.25.(10分)每年的月日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为吨.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.26.(10分)雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据完全平方公式的变形即可求解.【详解】∵∴=±5,∴的值为3或-7故选C.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的变形应用.2、B【分析】先求出一个顶点从刻度“1”平移到刻度“10”的距离,再根据平移的性质得出答案.【详解】解:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“1”平移到刻度“10”,∴三角板向右平移了1个单位,∴顶点C平移的距离CC′=1.故选B.【点睛】本题考查了平移的性质,结合图形及性质定理是解题的关键.3、C【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将一次函数y=2x+1的图象沿y轴向下平移5个单位,那么平移后所得图象的函数解析式为:y=2x+1-5,化简得,y=2x-1.故选:C.【点睛】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.4、B【分析】连接,和,根据矩形的判定可得:四边形是矩形,根据矩形的性质可得:=,,然后根据30°所对的直角边是斜边的一半即可求出,再根据勾股定理即可求出,然后根据30°所对的直角边是斜边的一半即可求出,从而求出.【详解】解:连接,和∵点为和的中点∴四边形是平行四边形根据全等的性质=,BC=∴四边形是矩形∴=,在Rt△中,∠=30°∴=2根据勾股定理,=在Rt△中,∠=30°∴=故选B.【点睛】此题考查的是矩形的判定及性质、直角三角形的性质和勾股定理,掌握矩形的判定及性质、30°所对的直角边是斜边的一半和用勾股定理解直角三角形是解决此题的关键.5、B【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【详解】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则
OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,∴∠P1OM=∠MOP,∠NOP=∠NOP2,
根据轴对称的性质,可得MP=P1M,PN=P2N,则
△PMN的周长的最小值=P1P2,
∴∠P1OP2=2∠AOB=70°,
∴等腰△OP1P2中,∠OP1P2+∠OP2P1=110°,
∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=110°,
故选:B.【点睛】本题考查了轴对称-最短路线问题,正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=110°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.6、B【分析】根据已知条件确定CD是AB的垂直平分线即可得出结论.【详解】解:∵AC=BC,
∴点C在AB的垂直平分线上,
∵AD=BD,
∴点D在AB的垂直平分线上,
∴CD垂直平分AB,
∵点在直线上,∴AP=BP,∵,∴BP=5,故选B.【点睛】本题主要考查了线段的垂直平分线,关键是熟练掌握线段的垂直平分线的性质.7、D【分析】分别根据同底数幂的乘法法则,同底数幂的除法法则,合并同类项法则以及幂的乘方与积的乘方运算法则逐一判断即可.【详解】解:A选项a2•a4=a6,故本选项不符合题意;B选项a16÷a2=a14,故本选项不符合题意;C选项a3与a5不是同类项,所以不能合并,故本选项不符合题意;D选项(﹣a2)4=a8,正确.故选:D.【点睛】本题考查同底数幂的乘法法则,同底数幂的除法法则,合并同类项法则以及幂的乘方与积的乘方运算法则,解题关键是区分同底数的幂的乘法法则与幂的乘方法则,同底数的幂的乘法法则为底数不变指数相加,幂的乘方法则为底数不变指数相乘.8、A【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【详解】解:∵ax=3,ay=2,
∴a2x+y=(ax)2×ay=32×2=1.
故选:A.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.9、C【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10、B【解析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.【详解】如图,满足条件的所有点P的个数为1.故选B.【点睛】本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.二、填空题(每小题3分,共24分)11、8【分析】先根据线段垂直平分线的性质得出AE=BE,再根据AB=AC即可得出AC的长,进而得出结论.【详解】的垂直平分线交于点,垂足为点,,,,,,的周长.故答案为:.【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.12、75°或35°【分析】分两种情况:当为锐角时,过点A作AD=AB,交BC于点D,通过等量代换得出,从而利用三角形外角的性质求出,最后利用三角形内角和即可求解;当为钝角时,直接利用等腰三角形的性质和外角的性质即可求解.【详解】当为锐角时,过点A作AD=AB,交BC于点D,如图1当为钝角时,如图2故答案为:75°或35°.【点睛】本题主要考查等腰三角形的性质和三角形外角的性质,分情况讨论是解题的关键.13、1【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【详解】解:∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点睛】本题考查了整体代入法求代数式的值,以及添括号法则.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.14、17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).15、1【分析】设点A的坐标是,然后根据三角形的面积公式解答即可.【详解】解:设点A的坐标是,∵AB垂直y轴,∴,∴的面积=.故答案为:1.【点睛】本题考查了反比例函数系数k的几何意义,属于基础题型,熟练掌握反比例函数系数k的几何意义是关键.16、AD是∠BAC的角平分线【分析】根据等边三角形的三线合一定理,即可得到答案.【详解】解:∵等边三角形中,为的中点,∴AD是∠BAC的角平分线,∵平分,∴点E是等边三角形的三条角平分线的交点,即点E为三角形的内心,∴也一定平分;故答案为:AD是∠BAC的角平分线.【点睛】本题考查了等边三角形的性质,以及三线合一定理,解题的关键是熟练掌握三线合一定理进行解题.17、1.【详解】解:如图,连接AA′、BB′.∵点A的坐标为(0,2),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是2.又∵点A的对应点在直线y=x上一点,∴2=x,解得x=1,∴点A′的坐标是(1,2),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故答案为1.【点睛】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣平移.根据平移的性质得到BB′=AA′是解题的关键.18、且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)是直角三角形,证明见解析;(3)当为100°、130°、160°时,△AOD是等腰三角形.【分析】(1)利用等边三角形的性质证明即可;(2)是直角三角形,利用,得到,再分别求出∠CDO、∠COD即可解答;(3)分三种情况讨论:①②③,即可解答.【详解】(1)∵△ABC和△OBD是等边三角形∴即在△ABO和△CBD中∴(2)直角三角形∵∴∵∴,∴△COD是直角三角形(3)①,需∴∴②,需∴∴③,需∴∴∴当为100°、130°、160°时,△AOD是等腰三角形【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、等边三角形的性质、直角三角形的性质、等腰三角形的性质是解题的关键.20、(1);(2)【分析】(1)提取公因式,然后即可得解;(2)按照去分母、去括号、移项、合并同类项、系数化1、检验的步骤求解即可.【详解】(1)原式==;(2)去分母,得去括号,得移项、合并同类项,得系数化1,得经检验,是方程的解,故方程的解为.【点睛】此题主要考查因式分解和分式方程的求解,熟练掌握,即可解题.21、-1.【解析】分析:先根据单项式乘多项式的法则,平方差公式化简,再代入数据求值.详解:y(x+y)+(x+y)(x-y)-x2,=xy+y2+x2-y2-x2,=xy,当x=-2,y=时,原式=-2×=-1.点睛:本题考查了单项式乘多项式,平方差公式,关键是先把代数式化简,再把题目给定的值代入求值,熟练掌握运算法则和公式是解题的关键.22、(1);(2)见解析【分析】(1)在△CDE中根据等腰三角形的性质和三角形内角和定理得到∠ECD的度数.在△ACD中,根据三角形外角的性质即可得出结论;(2)在△CDE中,根据等腰三角形的性质得到∠ECD=∠CED,进而得到∠ECD+∠CDB=90°.由∠ECD+∠DCB=90°,得到∠DCB=∠BDC.由∠DCB+∠BDC=∠ABC=45°,得到∠DCB=∠BDC=22.5°,得到∠ECD=∠CED=67.5°,得到∠EDC=45°.由EF⊥DC于点F,得到∠DEF=∠EDC=45°,即有EF=DF,∠EDG=∠EGD=67.5°,根据等角对等边得到EG=ED,等量代换得到EG=DC,即可得到结论.【详解】∵等腰中,,,∴.又∵CD=DE,,∴,∴;(2)∵CD=DE,∴.又∵,∴.∵,∴.∵,∴,∴,∴.∵于点,∴,∴,,∴,∴,∴,∴.【点睛】本题考查了等腰三角形的判定与性质.灵活运用等腰三角形的性质及三角形外角的性质是解答本题的关键.23、(1)见解析;(2),,;(3)【分析】(1)根据轴对称的性质,找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各顶点即可得;(2)根据所画图形可直接写出,,的坐标;(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图,为所求.(2),,.(3)【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.24、5<c<1【分析】由a2+b2=10a+8b-41,得a,b的值,然后利用三角形的三边关系求得c的取值范围即可.【详解】解:∵满足a2+b2=10a+8b-41,
∴a2-10a+25+b2-8b+16=0,
∴(a-5)2+(b-4)2=0,
∵(a-5)2≥0,(b-4)2≥0,
∴a-5=0,b-4=0,
∴a=5,b=4;
∴5-4<c<5+4,
∵c是最长边,
∴5<c<1.【点睛】考查了配方法的应用、非负数的性质及三角形的三边关系,解题的关键是对方程的左边进行配方,难度不大.25、(1)甲万元,乙万元;(2)有种;(3)选购甲型设备台,乙型设备台【分析】(1)设甲型设备每台的价格为x万元,乙型设备每台的价格为y万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”,即可得出关于x、y的二元一次方程组,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险经纪服务合作方案
- 戏剧演出策划方案
- 2026年企业反腐败合规协议
- 标准制定2026年隐私保护协议
- 应急救援培训课件
- 企业员工培训与职业发展目标路径制度
- 应急安全培训讲话稿课件
- 小批量电子设备研制中的质量管理体系构建与实践探索
- 小学高年级学生上交叉综合征运动干预效果的实证研究
- 小学生关爱品质的现状剖析与培育路径探究
- 中图版地理七年级上册知识总结
- 大连理工大学固态相变各章节考点及知识点总节
- 肿瘤科专业组药物临床试验管理制度及操作规程GCP
- 统编版四年级下册语文第二单元表格式教案
- 测量系统线性分析数据表
- 上海农贸场病媒生物防制工作标准
- 第三单元课外古诗词诵读《太常引·建康中秋夜为吕叔潜赋》课件
- YY 0334-2002硅橡胶外科植入物通用要求
- GB/T 5836.1-1992建筑排水用硬聚氯乙烯管材
- 论文写作讲座课件
- 危险化学品-培训-课件
评论
0/150
提交评论