




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省邳州市新河中学2023-2024学年数学八上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列四个多项式中,能因式分解的是()A. B. C. D.2.下列四个数中,是无理数的是()A. B. C. D.3.若,,则()A. B. C. D.4.下列根式中,与是同类二次根式的是()A. B. C. D.5.如图,在中,,垂足为,延长至,取,若的周长为12,则的周长是()A. B. C. D.6.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将,换算成十进制数应为:;.按此方式,将二进制换算成十进制数和将十进制数13转化为二进制的结果分别为()A.9, B.9, C.17, D.17,7.下列式子:①;②;③;④.其中计算正确的有()A.1个 B.2个 C.3个 D.4个8.下列各分式中,最简分式是()A. B. C. D.9.多项式与多项式的公因式是()A. B. C. D.10.如图,在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B,C为圆心,大于线段BC长度一半的长为半径画圆弧.两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED.一定正确的是()A.①②③ B.①② C.①③ D.②③11.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是()A.②③ B.③④ C.②③④ D.①②③④12.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km;正确的是()A.①② B.①③ C.①④ D.①③④二、填空题(每题4分,共24分)13.某种病毒的直径是0.00000008米,这个数据用科学记数法表示为__________米.14.能使分式的值为零的x的值是______.15.已知一组数据:3,4,5,5,6,6,6,这组数据的众数是________.16.点关于x轴对称点M的坐标为_________.17.如图,在平面直角坐标系中,的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x轴上有一点P,使得PA+PB的值最小,则点P的坐标为______________18.以方程组的解为坐标的点在第__________象限.三、解答题(共78分)19.(8分)如图1,已知ED垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.(1)求证:∠AFE=∠CFD;(1)如图1.在△GMN中,P为MN上的任意一点.在GN边上求作点Q,使得∠GQM=∠PQN,保留作图痕迹,写出作法并作简要证明.20.(8分)阅读下列解题过程:(1);(2);请回答下列问题:(1)观察上面解题过程,请直接写出的结果为__________________.(2)利用上面所提供的解法,请化简:21.(8分)如图,已知点在同一直线上,∥,且,,求证:∥.22.(10分)阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式的最小值.方法如下:∵,由,得;∴代数式的最小值是4.(1)仿照上述方法求代数式的最小值.(2)代数式有最大值还是最小值?请用配方法求出这个最值.23.(10分)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.24.(10分)阅读下列计算过程,回答问题:解方程组解:①,得,③②③,得,.把代入①,得,,.∴该方程组的解是以上过程有两处关键性错误,第一次出错在第_______步(填序号),第二次出错在第________步(填序号),以上解法采用了__________消元法.25.(12分)解一元二次方程.(1).(2).26.已知:如图,AB=BC,∠A=∠C.求证:AD=CD.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据因式分解的定义逐项判定即可.【详解】解:A.,无法因式分解,不符合题意;B.,符合题意;C.,无法因式分解,不符合题意;D.,无法因式分解,不符合题意;故答案为B.【点睛】本题主要考查了因式分解的定义,因式分解是把一个多项式转化成几个整式积的形式.2、A【解析】试题分析:根据无理数是无限不循环小数,可得A.是无理数,B.,C.,D.是有理数,故选A.考点:无理数3、D【分析】由关系式(a-b)2=(a+b)2-4ab可求出a-b的值【详解】∵a+b=6,ab=7,(a-b)2=(a+b)2-4ab∴(a-b)2=8,∴a-b=.故选:D.【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.4、B【分析】先化简各选项,根据同类二次根式的定义判断即可.【详解】解:A、,不符合题意,故A错误;B、,符合题意,故B正确;C、,不符合题意,故C错误;D、,不符合题意,故D错误;故选:B.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.5、D【解析】根据等腰三角形的性质进行求解,得到各边长即可得出答案.【详解】∵中,∴是等边三角形∵∴,,,,∵∴∴∵的周长为12∴,,∴的周长是故答案为:D.【点睛】本题考查了三角形的周长问题,通过等腰三角形的性质求出各边长是解题的关键.6、A【分析】首先理解十进制的含义,然后结合有理数混合运算法则及顺序进一步计算即可.【详解】将二进制换算成十进制数如下:;将十进制数13转化为二进制数如下:……1,……0,……1,∴将十进制数13转化为二进制数后得,故选:A.【点睛】本题主要考查了有理数运算,根据题意准确理解十进制与二进制的关系是解题关键.7、C【解析】试题解析:①错误,②正确,③正确,④正确.正确的有3个.故选C.点睛:同底数幂相乘,底数不变,指数相加.8、A【分析】根据最简分式的标准:分子,分母中不含有公因式,不能再约分逐一判断即可.【详解】的分子、分母都不能再分解,且不能约分,是最简分式,故A选项符合题意.=m-n,故B选项不符合题意·,=,故C选项不符合题意·,=,故D选项不符合题意·,故选A.【点睛】本题考查了最简分式的知识,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.最简分式的标准:分子,分母中不含有公因式,不能再约分,熟练掌握最简分式的标准是解题关键.9、A【解析】试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).故选A考点:因式分解10、B【分析】利用基本作图得到,则DE垂直平分BC,所以EB=EC,根据等腰三角形的性质得∠EBC=∠C,然后根据等角的余角相等得到∠A=∠EBA.【详解】由作法得,而D为BC的中点,所以DE垂直平分BC,则EB=EC,所以∠EBC=∠C,而,所以∠A=∠EBA,所以①②正确,故选:B.【点睛】本题主要考查了垂直平分线的性质及等腰三角形的性质,熟练掌握相关性质特点是解决本题的关键.11、C【分析】分别在以上四种情况下以P为圆心,PQ的长度为半径画弧,观察弧与直线AM的交点即为Q点,作出后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,所以不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,但是此时两个三角形全等,所以形状相同,所以唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以④正确.综上:②③④正确.故选C.【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q是关键.12、B【分析】根据函数图象直接得出甲乙两地之间的距离;根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;设慢车速度为3xkm/h,快车速度为4xkm/h,由(3x+4x)×4=560,可得x=20,从而得出快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离,当慢车行驶了7小时后,快车已到达甲地,可求出此时两车之间的距离即可.【详解】由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,故③正确.故选B.【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,读懂图,获取正确信息是解题关键.二、填空题(每题4分,共24分)13、【分析】把一个数表示成a与10的n次幂相乘的形式这种记数法叫做科学记数法,以此可得.【详解】,故答案为:1×10-1.【点睛】本题考查科学记数法的知识点,熟练掌握科学记数法的记数法是本题的关键.14、1【分析】根据分式值为零,分子为零且分母不为零求解.【详解】解:∵分式的值为0,∴|x|-1=0,x+1≠0解得x=1.故答案为:1.【点睛】本题考查分式的值为零的条件.15、1【分析】根据众数的定义,即可得到答案.【详解】∵3,4,5,5,1,1,1中1出现的次数最多,∴这组数据的众数是:1.故答案是:1.【点睛】本题主要考查众数的定义,掌握“一组数据中,出现次数最多的数,称为众数”是解题的关键.16、(-3,-2)【分析】根据平面直角坐标系中,两点关于x轴对称,两点坐标的关系,即可求出答案.【详解】∵点关于x轴对称点是M,∴点M的坐标为(-3,-2),故答案是:(-3,-2).【点睛】本题主要考查平面直角坐标系中,两点关于x轴对称,两点坐标的关系:横坐标相等,纵坐标互为相反数,理解并牢记两点坐标的关系是解题的关键.17、(-2,0)【分析】作点B关于x轴的对称点D,连接AD,则AD与x轴交点即为点P位置,利用待定系数法求出AD解析式,再求出点P坐标即可.【详解】解:作点B关于x轴的对称点D,则点D坐标为(0,-4),连接AD,则AD与x轴交点即为点P位置.设直线AD解析式为y=kx+b(k≠0),∵点A、D的坐标分别为(-3,2),(0,-4),∴解得∴直线AD解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B关于x轴对称点D,确定点P位置是解题关键.18、三【分析】解出x,y的值,再通过符号判断出在第几象限即可.【详解】解:由方程组可得,根据第三象限点的特点可知,点(-1,-1)在第三象限,故答案为:三.【点睛】本题考查了二元一次方程组的解法及直角坐标系中各象限点的坐标特点,解题的关键是熟记各象限点的坐标特点.三、解答题(共78分)19、(1)证明见解析;(1)答案见解析.【分析】(1)根据垂直平分线的性质证明三角形CFB是等腰三角形,进而证明∠AFE=∠CFD;(1)作点P关于GN的对称点P′,连接P′M交GN于点Q,结合(1)即可证明∠GQM=∠PQN.【详解】(1)∵ED垂直平分BC,∴FC=FB,∴△FCB是等腰三角形.∵FD⊥BC,由等腰三角形三线合一可知:FD是∠CFB的角平分线,∴∠CFD=∠BFD.∵∠AFE=∠BFD,∴∠AFE=∠CFD.(1)作点P关于GN的对称点P',连接P'M交GN于点Q,点Q即为所求.∵QP=QP',∴△QPP'是等腰三角形.∵QN⊥PP',∴QN是∠PQP'的角平分线,∴∠PQN=∠P'QN.∵∠GQM=∠P'QN,∴∠GQM=∠PQN.【点睛】本题考查了作图−复杂作图,解决本题的关键是掌握线段垂直平分线的性质.20、(1);(2)9【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【详解】解:(1)=.(2)=-1+-+-+…+-+-=-1+=-1+10=9【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键.21、证明见解析.【分析】先由两线段平行推出同位角相等,再由全等三角形推出对应角相等,接着由同位角相等反推出两线段平行.【详解】证明:∵∥,∴,∵,∴即,在△ABC和△DEF中,,∴△ABC≌△DEF,∴,∴∥.【点睛】本题考查全等三角形的性质和判定.本题较为简单,难度不大,只需证明出两个三角形全等,即可证明出其对应的角相等.22、(1);(2)有最大值,最大值为32.【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【详解】解:(1)∵,由,得;∴代数式的最小值是;(2),∵,∴,∴代数式有最大值,最大值为32.【点睛】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.23、(1)证明见解析;(2)CD的长为.【分析】(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安全标准化安全培训考试试题下载
- 2024-2025新版车间安全培训考试试题A卷附答案
- 2025年企业主要负责人安全培训考试试题附参考答案(典型题)
- 2025年管理人员安全培训考试试题附参考答案【能力提升】
- 2025-2030年中国LED显示屏市场发展形势与产业投资风险研究报告
- 2025班组三级安全培训考试试题及参考答案(典型题)
- 2025年公司及项目部安全培训考试试题带答案(培优B卷)
- 2025公司项目负责人安全培训考试试题附参考答案【培优】
- 2025年新入职工职前安全培训考试试题答案真题汇编
- 2025至2031年中国白18k珍珠吊坠行业投资前景及策略咨询研究报告
- 森林无人机灭火技术集成-深度研究
- 股份转让协议模板
- 利他思维培训课件
- 2025年北京铁路局集团招聘笔试参考题库含答案解析
- 湖南省长沙市雅礼实验高中-主题班会-把学习变为热爱:内驱力【课件】
- 2025中考物理总复习填空题练习100题(附答案及解析)
- 2025年牛津译林版英语七年级下册全册单元重点知识点与语法汇编
- 期中考试成绩质量分析
- 高空作业车(剪叉式、曲臂式)验收表
- 浸水电梯应急保障检测规范DB1305T+95-2024
- 高度近视防控专家共识
评论
0/150
提交评论