江苏省苏州市62023-2024学年八年级数学第一学期期末统考试题含解析_第1页
江苏省苏州市62023-2024学年八年级数学第一学期期末统考试题含解析_第2页
江苏省苏州市62023-2024学年八年级数学第一学期期末统考试题含解析_第3页
江苏省苏州市62023-2024学年八年级数学第一学期期末统考试题含解析_第4页
江苏省苏州市62023-2024学年八年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市62023-2024学年八年级数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知是二元一次方程组的解,则的值为A.-1 B.1 C.2 D.32.等腰三角形的周长为12,则腰长a的取值范围是()A.3<a<6 B.a>3 C.4<a<7 D.a<63.如图,已知和都是等腰直角三角形,,则的度数是().A.144° B.142° C.140° D.138°4.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60° B.95°,105° C.30°,60° D.90°,90°5.要使分式有意义,则x的取值应满足()A.x≠2 B.x=2 C.x=1 D.x≠16.等腰三角形的两边长分别为3cm,6cm,则该三角形的周长为()A.12cm B.15cm C.12cm或15cm D.以上都不对7.已知A(x1,3),B(x2,12)是一次函数y=﹣6x+10的图象上的两点,则下列判断正确的是()A. B.C. D.以上结论都不正确8.电话卡上存有4元话费,通话时每分钟话费元,则电话卡上的余额(元)与通话时间(分钟)之间的函数图象是图中的()A. B.C. D.9.小明手中有2根木棒长度分别为和,请你帮他选择第三根木棒,使其能围成一个三角形,则选择的木棒可以是()A. B. C. D.无法确定10.计算下列各式,结果为的是()A. B. C. D.11.如图,由8个全等的小长方形拼成一个大正方形,线段AB的端点都在小长方形的顶点上,若点C是某个小长方形的顶点,连接CA,CB,那么满足△ABC是等腰三角形的点C的个数是()A.3 B.4 C.5 D.612.下列式子是分式的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知关于的方程无解,则m=________.14.把多项式分解因式的结果为__________________.15.在平面直角坐标系中,已知两点的坐标分别为,若点为轴上一点,且最小,则点的坐标为__________.16.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为_____.17.如图,已知△ABC为等边三角形,BD为中线,延长BC至点E,使CE=CD=1,连接DE,则BE=________.18.一次数学活动课上,老师利用“在面积一定的矩形中,正方形的周长最短”这一结论,推导出“式子的最小值为”.其推导方法如下:在面积是的矩形中,设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是,模仿老师的推导,可求得式子的最小值是________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点坐标为,点是轴正半轴上一点,且,点是轴上位于点右侧的一个动点,设点的坐标为.(1)点的坐标为___________;(2)当是等腰三角形时,求点的坐标;(3)如图2,过点作交线段于点,连接,若点关于直线的对称点为,当点恰好落在直线上时,_____________.(直接写出答案)20.(8分)已知如图,直线与x轴相交于点A,与直线相交于点P.PD垂直x轴,垂足为D.(1)求点P的坐标.(2)请判断△OPA的形状并说明理由.21.(8分)如图,已知点B、E、C、F在一条直线上,且AB=DE,BE=CF,AB∥DE.求证:AC∥DF22.(10分)如图,P是正方形ABCD的边BC上的一个动点(P与B、C不重合)连接AP,过点B作交CD于E,将沿BE所在直线翻折得到,延长交BA的延长长线于点F.(1)探究AP与BE的数量关系,并证明你的结论;(2)当AB=3,BP=2PC时,求EF的长.23.(10分)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D,(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.24.(10分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?25.(12分)如图1,在平面直角坐标系中,O为坐标原点,点A(8,0).动点P从A出发以每秒2个单位长度的速度沿线段AO向终点O运动,同时动点Q从O出发以相同速度沿y轴正半轴运动,点P到达点O,两点同时停止运动,设运动时间为t.(1)当∠OPQ=45°时,请求出运动时间t;(2)如图2,以PQ为斜边在第一象限作等腰Rt△PQM,设M点坐标为(m,n),请探究m与n的数量关系并说明理由.26.如图,点A,E,F在直线l上,AE=BF,AC//BD,且AC=BD,求证:CF=DE

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①-②,得b=3,∴a-b=-1;故选A.考点:二元一次方程的解.2、A【分析】根据等腰三角形的腰长为a,则其底边长为:12﹣2a,根据三角形三边关系列不等式,求解即可.【详解】解:由等腰三角形的腰长为a,则其底边长为:12﹣2a.∵12﹣2a﹣a<a<12﹣2a+a,∴3<a<1.故选:A.【点睛】本题考查了三角形三边的关系,对任意一个三角形,任意两边之和大于第三边,任意两边之差小于第三边,灵活利用三角形三边的关系确定三角形边长的取值范围是解题的关键.3、C【分析】根据和都是等腰直角三角形,得,,,从而通过推导证明,得;再结合三角形内角和的性质,通过计算即可得到答案.【详解】∵和都是等腰直角三角形∴,,∴∴∴∴∴∴故选:C.【点睛】本题考查了等腰直角三角形、全等三角形、三角形内角和的知识;解题的关键是熟练掌握等腰直角三角形、全等三角形、三角形内角和的性质,从而完成求解.4、D【分析】根据两个直角互补的定义即可判断.【详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.5、A【解析】根据分式的性质,要使分式有意义,则分式的分母不等于0.【详解】根据题意可得要使分式有意义,则所以可得故选A.【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.6、B【分析】分两种情况:底边为3cm,底边为6cm时,结合三角形三边的关系,根据三角形的周长公式,可得答案.【详解】底边为3cm,腰长为6cm,这个三角形的周长是3+6+6=15cm,底边为6cm,腰长为3cm,3+3=6,不能以6cm为底构成三角形;故答案为:B.【点睛】本题考查了等腰三角形的性质,利用了等腰三角形的性质,三角形三边的关系,分类讨论是解题关键.7、B【分析】根据一次函数y=−6x+10图象的增减性,以及点A和点B的纵坐标的大小关系,即可得到答案.【详解】解:∵一次函数y=−6x+10的图象上的点y随着x的增大而减小,且3<12,∴x1>x2,故选B.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.8、D【分析】根据当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.据此判断即可.【详解】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.

∴,

故只有选项D符合题意.

故选:D.【点睛】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.9、C【分析】据三角形三边关系定理,设第三边长为xcm,则9-4<x<9+4,即5<x<13,由此选择符合条件的线段.【详解】解:设第三边长为xcm,

由三角形三边关系定理可知,9-4<x<9+4,

即,5<x<13,

∴x=6cm符合题意.

故选:C.【点睛】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.10、D【分析】分别计算每个选项然后进行判断即可.【详解】解:A.不能得到,选项错误;B.,选项错误;C.,不能得到,选项错误;D.,选项正确.故选:D.【点睛】本题考查了同底数幂的运算,熟练掌握运算法则是解题的关键.11、D【分析】根据等腰三角形的判定即可得到结论.【详解】解:如图所示,使△ABP为等腰三角形的点P的个数是6,

故选:D.【点睛】本题考查了等腰三角形的判定,正确的找出符合条件的点P是解题的关键.12、B【解析】解:A、C、D是整式,B是分式.故选B.二、填空题(每题4分,共24分)13、-3或1【分析】分式方程去分母转化为整式方程,分两种情况:(1)无实数根,(2)整式方程的根是原方程的增根,分别求解即可.【详解】去分母得:,整理得,由于原方程无解,故有以下两种情况:(1)无实数根,即且,解得;(2)整式方程的根是原方程的增根,即,解得;故答案为:或.【点睛】此题考查了分式方程无解的条件,分式方程无解,有两种情况,①整式方程本身无解;②整式方程有解,但使得分式方程的最简公分母为零(即为增根).14、【分析】先提取公因式,再根据完全平方公式分解.【详解】解:.故答案为:.【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题关键.15、【解析】可过点A作关于x轴的对称点A′,连接A′B与轴的交点即为所求.【详解】如图,作点A作关于x轴的对称点A′,连接A′B与x轴的交于点M,点M即为所求.∵点B的坐标(3,2)点A′的坐标(-1,-1),∴直线BA′的解析式为y=x-,令y=0,得到x=,∴点M(,0),故答案为:(,0).【点睛】此题考查轴对称问题,熟练掌握轴对称的性质,理解两点之间线段最短的涵义.16、40°【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE的度数.【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.17、1【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE的长.【详解】∵△ABC为等边三角形,

∴AB=BC=AC,

∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=1.故答案为:1.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.18、【分析】仿照老师的推导过程,设面积为2的矩形的一条边长为x,根据x=可求出x的值,利用矩形的周长公式即可得答案.【详解】在面积为2的矩形中,设一条边长为x,则另一条边长为,∴矩形的周长为2(x+),当矩形成为正方形时,就有x=,解得:x=,∴2(x+)=4,∴x+(x>0)的最小值为2,故答案为:2【点睛】此题考查了分式方程的应用,弄清题意,得出x=是解题的关键.三、解答题(共78分)19、(1);(2)或或;(3)【分析】(1)根据勾股定理可以求出AO的长,则可得出A的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P的坐标;(3)根据,点在直线上,得到,利用点,关于直线对称点,根据对称性,可证,可得,,设,则有,根据勾股定理,有:解之即可.【详解】解:(1)∵点坐标为,点是轴正半轴上一点,且,∴是直角三角形,根据勾股定理有:,∴点的坐标为;(2)∵是等腰三角形,当时,如图一所示:∴,∴点的坐标是;当时,如图二所示:∴∴点的坐标是;当时,如图三所示:设,则有∴根据勾股定理有:即:解之得:∴点的坐标是;(3)当是钝角三角形时,点不存在;当是锐角三角形时,如图四示:连接,∵,点在直线上,∴和是直角三角形,∴,∵点,关于直线对称点,根据对称性,有,∴,∴则有:∴是等腰三角形,则有,∴,设,则有,根据勾股定理,有:即:解之得:【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.20、(1);(2)等边三角形,理由见解析【分析】(1)联立两个解析式,求解即可求得P点的坐标;(2)先求出OA=4,然后根据PD⊥X轴于D,且点P的坐标为(2,),可得OD=AD=2,PD=,然后根据勾股定理可得OP=4,PA=4即可证明△POA是等边三角形.【详解】解:(1)联立两个解析式得,解得,∴点P的坐标为(2,);(2)△OPA为等边三角形,理由:将y=0代入,∴,∴解得x=4,即OA=4,∵PD⊥X轴于D,且点P的坐标为(2,),∴OD=AD=2,PD=,由勾股定理得OP=,同理可得PA=4∴△POA是等边三角形.【点睛】本题考查了一次函数的性质,勾股定理,等边三角形的判定和等腰三角形的性质,求出点P的坐标是解题关键.21、见解析【分析】根据SAS证明△ABC≌△DEF全等,从而得到∠ACB=∠F,再得到AC//DF.【详解】∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF,∴∠ACB=∠F,∴AC//DF.【点睛】考查了全等三角形的判定和性质以及平行线的判定和性质,解题关键是利用SAS证明△ABC≌△DEF.22、(1)AP=BE,证明见解析;(1).【分析】(1)AP=BE,要证AP=BE,只需证△PBA≌△ECB即可;(1)过点E作EH⊥AB于H,如图.易得EH=BC=AB=2,BP=1,PC=1,然后运用勾股定理可求得AP(即BE)=,BH=1.易得DC∥AB,从而有∠CEB=∠EBA.由折叠可得∠C′EB=∠CEB,即可得到∠EBA=∠C′EB,即可得到FE=FB.设EF=x,则有FB=x,FH=x-1.在Rt△FHE中运用勾股定理就可解决问题;【详解】(1)解:(1)AP=BE.

理由:∵四边形ABCD是正方形,

∴AB=BC,∠ABC=∠C=90°,

∴∠ABE+∠CBE=90°.

∵BE⊥AP,∴∠PAB+∠EBA=90°,

∴∠PAB=∠CBE.

在△PBA和△ECB中,∴△PBA≌△ECB,

∴AP=BE;(1)过点E作EH⊥AB于H,如图.

∵四边形ABCD是正方形,

∴EH=BC=AB=2.

∵BP=1PC,

∴BP=1,PC=1∴BE=AP=∴BH=∵四边形ABCD是正方形,

∴DC∥AB,

∴∠CEB=∠EBA.

由折叠可得∠C′EB=∠CEB,

∴∠EBA=∠C′EB,

∴EF=FB.

设EF=x,则有FB=x,FH=x-1.

在Rt△FHE中,

根据勾股定理可得x1=(x-1)1+21,解得x=,∴EF=【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.23、(1)证明见解析;(2)AB=1.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【详解】解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=1,∵△ABE≌△CDF,∴AB=CD=1.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.24、软件升级后每小时生产1个零件.【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论