陕西省合阳县黑池中学2024届下学期高三数学试题5月月考试卷_第1页
陕西省合阳县黑池中学2024届下学期高三数学试题5月月考试卷_第2页
陕西省合阳县黑池中学2024届下学期高三数学试题5月月考试卷_第3页
陕西省合阳县黑池中学2024届下学期高三数学试题5月月考试卷_第4页
陕西省合阳县黑池中学2024届下学期高三数学试题5月月考试卷_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省合阳县黑池中学2024届下学期高三数学试题5月月考试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则()A. B. C. D.2.函数在上为增函数,则的值可以是()A.0 B. C. D.3.已知集合,,则等于()A. B. C. D.4.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.85.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.6.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.7.数列{an},满足对任意的n∈N+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=()A.132 B.299 C.68 D.998.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.9.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.10.下列函数中,图象关于轴对称的为()A. B.,C. D.11.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或912.已知命题,,则是()A., B.,.C., D.,.二、填空题:本题共4小题,每小题5分,共20分。13.若曲线(其中常数)在点处的切线的斜率为1,则________.14.展开式中,含项的系数为______.15.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.16.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且,.(1)求的值;(2)若求的面积.18.(12分)设前项积为的数列,(为常数),且是等差数列.(I)求的值及数列的通项公式;(Ⅱ)设是数列的前项和,且,求的最小值.19.(12分)平面直角坐标系中,曲线:.直线经过点,且倾斜角为,以为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程与直线的参数方程;(2)若直线与曲线相交于,两点,且,求实数的值.20.(12分)已知函数,.(1)当时,求函数的值域;(2),,求实数的取值范围.21.(12分)已知,,为正数,且,证明:(1);(2).22.(10分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【题目详解】由,即,又,即,,即,所以.故选:D.【题目点拨】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.2、D【解题分析】

依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【题目详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【题目点拨】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.3、A【解题分析】

进行交集的运算即可.【题目详解】,1,2,,,,1,.故选:.【题目点拨】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.4、C【解题分析】

根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【题目详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【题目点拨】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.5、A【解题分析】

详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。6、D【解题分析】

由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【题目详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【题目点拨】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.7、B【解题分析】

由为定值,可得,则是以3为周期的数列,求出,即求.【题目详解】对任意的,均有为定值,,故,是以3为周期的数列,故,.故选:.【题目点拨】本题考查周期数列求和,属于中档题.8、A【解题分析】

根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【题目详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【题目点拨】本题考查古典概型概率,解题关键是求出基本事件的个数.9、B【解题分析】

由,则输出为300,即可得出判断框的答案【题目详解】由,则输出的值为300,,故判断框中应填?故选:.【题目点拨】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.10、D【解题分析】

图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【题目详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【题目点拨】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.11、C【解题分析】

由题意利用两个向量的数量积的定义和公式,求的值.【题目详解】解:由题意可得,求得,或,故选:C.【题目点拨】本题主要考查两个向量的数量积的定义和公式,属于基础题.12、B【解题分析】

根据全称命题的否定为特称命题,得到结果.【题目详解】根据全称命题的否定为特称命题,可得,本题正确选项:【题目点拨】本题考查含量词的命题的否定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用导数的几何意义,由解方程即可.【题目详解】由已知,,所以,解得.故答案为:.【题目点拨】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.14、2【解题分析】

变换得到,展开式的通项为,计算得到答案.【题目详解】,的展开式的通项为:.含项的系数为:.故答案为:.【题目点拨】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.15、2【解题分析】

根据比赛场次,分析,画出图象,计算结果.【题目详解】画图所示,可知目前(五)班已经赛了2场.故答案为:2【题目点拨】本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.16、【解题分析】

过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【题目详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,,,.故答案为:.【题目点拨】本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3(2)78【解题分析】试题分析:(1)由两角和差公式得到,由三角形中的数值关系得到,进而求得数值;(2)由三角形的三个角的关系得到,再由正弦定理得到b=15,故面积公式为.解析:(1)在中,由,得为锐角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面积.18、(Ⅰ),;(Ⅱ)【解题分析】

(Ⅰ)当时,由,得到,两边同除以,得到.再根据是等差数列.求解.(Ⅱ),根据前n项和的定义得到,令,研究其增减性即可.【题目详解】(Ⅰ)当时,,所以,即,所以.因为是等差数列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以数列是递增数列,所以,即.【题目点拨】本题主要考查等差数列的定义,前n项和以及数列的增减性,还考查了转化化归的思想和运算求解的能力,属于中档题.19、(Ⅰ)(t为参数);(Ⅱ)或或.【解题分析】

试题分析:本题主要考查极坐标方程、参数方程与直角方程的相互转化、直线与抛物线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用,化简表达式,得到曲线的极坐标方程,由已知点和倾斜角得到直线的参数方程;第二问,直线方程与曲线方程联立,消参,解出的值.试题解析:(1)即,.(2),符合题意考点:本题主要考查:1.极坐标方程,参数方程与直角方程的相互转化;2.直线与抛物线的位置关系.20、(1);(2).【解题分析】

(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;(2)由参变量分离法得出在区间内有解,分和讨论,求得函数的最大值,即可得出实数的取值范围.【题目详解】(1)当时,.当时,;当时,.函数的值域为;(2)不等式等价于,即在区间内有解当时,,此时,,则;当时,,函数在区间上单调递增,当时,,则.综上,实数的取值范围是.【题目点拨】本题主要考查含绝对值函数的值域与含绝对值不等式有解的问题,利用绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键,考查分类讨论思想的应用,属于中等题.21、(1)证明见解析;(2)证明见解析.【解题分析】

(1)利用均值不等式即可求证;(2)利用,结合,即可证明.【题目详解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【题目点拨】本题考查利用均值不等式证明不等式,涉及的妙用,属

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论