




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北保定市2024届高三下学期第二次校模拟考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则()A., B.,C., D.,2.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是()A. B. C. D.3.已知集合,,,则集合()A. B. C. D.4.如图,在中,,且,则()A.1 B. C. D.5.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.6.若复数满足,则(其中为虚数单位)的最大值为()A.1 B.2 C.3 D.47.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件8.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A. B. C. D.9.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A. B.C. D.10.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.11.双曲线的渐近线方程为()A. B.C. D.12.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知平面向量,的夹角为,且,则=____14.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,则a2=____.15.设函数满足,且当时,又函数,则函数在上的零点个数为___________.16.已知双曲线(,)的左,右焦点分别为,,过点的直线与双曲线的左,右两支分别交于,两点,若,,则双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知a>0,证明:1.18.(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积19.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.20.(12分)已知数列中,a1=1,其前n项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求λ的取值范围.21.(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.22.(10分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【题目详解】可能的取值为;可能的取值为,,,,故,.,,故,,故,.故选B.【题目点拨】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.2、D【解题分析】
因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.【题目详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,即,由得.故选:.【题目点拨】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.3、D【解题分析】
根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【题目点拨】本题考查集合的混合运算,属基础题.4、C【解题分析】
由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【题目详解】由,则,即,所以,又共线,则.故选:C【题目点拨】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.5、B【解题分析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【题目详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.【题目点拨】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.6、B【解题分析】
根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【题目详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【题目点拨】本题考查了复数模的定义及其几何意义应用,属于基础题.7、B【解题分析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【题目详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【题目点拨】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.8、B【解题分析】
基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【题目详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【题目点拨】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.9、C【解题分析】
由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【题目详解】由题得①又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,所以②又③由①②③可得:,,所以双曲线的标准方程为.故选:C【题目点拨】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.10、D【解题分析】
根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【题目详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【题目点拨】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.11、A【解题分析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【题目详解】双曲线得,则其渐近线方程为,整理得.故选:A【题目点拨】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.12、B【解题分析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【题目详解】请在此输入详解!二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
根据平面向量模的定义先由坐标求得,再根据平面向量数量积定义求得;将化简并代入即可求得.【题目详解】,则,平面向量,的夹角为,则由平面向量数量积定义可得,根据平面向量模的求法可知,代入可得,解得,故答案为:1.【题目点拨】本题考查了平面向量模的求法及简单应用,平面向量数量积的定义及运算,属于基础题.14、【解题分析】
根据二项展开式的通项公式即可得结果.【题目详解】解:(2x-1)7的展开式通式为:当时,,则.故答案为:【题目点拨】本题考查求二项展开式指定项的系数,是基础题.15、1【解题分析】
判断函数为偶函数,周期为2,判断为偶函数,计算,,画出函数图像,根据图像到答案.【题目详解】知,函数为偶函数,,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,,,当时,,,函数先增后减。当时,,,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共点,则函数在上的零点个数为1.故答案为:.【题目点拨】本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.16、【解题分析】
设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【题目详解】解:设,由双曲线的定义得出:,,由图可知:,又,即,则,为等腰三角形,,设,,则,,即,解得:,则,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案为:.【题目点拨】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析【解题分析】
利用分析法,证明a即可.【题目详解】证明:∵a>0,∴a1,∴a1≥0,∴要证明1,只要证明a1(a)1﹣4(a)+4,只要证明:a,∵a1,∴原不等式成立.【题目点拨】本题考查不等式的证明,着重考查分析法的运用,考查推理论证能力,属于中档题.18、(1),;(2).【解题分析】
(1)先把参数方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;(2)先利用极坐标求出弦长,再求高,最后求的面积.【题目详解】(1)曲线的极坐标方程为:,因为曲线的普通方程为:,曲线的极坐标方程为;(2)由(1)得:点的极坐标为,点的极坐标为,,点到射线的距离为的面积为.【题目点拨】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.19、(1)(2)不存在;详见解析【解题分析】
(1)设,,,通过,即为的中点,转化求解,点的轨迹的方程.(2)设直线的方程为,先根据,可得,①,再根据韦达定理,点在椭圆上可得,②,将①代入②可得,该方程无解,问题得以解决【题目详解】(1)设,,则,,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得.曲线的方程.(2)由题意知直线的斜率存在且不为零,设直线的方程为,因为,故,即①,联立,消去得:,设,,,,,因为四边形为平行四边形,故,点在椭圆上,故,整理得②,将①代入②,得,该方程无解,故这样的直线不存在.【题目点拨】本题考查点的轨迹方程的求法、满足条件的点是否存在的判断与直线方程的求法,考查数学转化思想方法,是中档题.20、(1)(2)【解题分析】
(1)项和转换可得,继而得到,可得解;(2)代入可得,由数列为递增数列可得,,令,可证明为递增数列,即,即得解【题目详解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵数列为递增数列,∴,即.令,即.∴为递增数列,∴,即的取值范围为.【题目点拨】本题考查了数列综合问题,考查了项和转换,数列的单调性,最值等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.21、(1)见解析(2)【解题分析】
(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2)过作交于,由为的中点,结合已知有平面.则,可求得.建立坐标系分别求得面的法向量,平面的一个法向量为,利用公式即可求得结果.【题目详解】(1)证明:平面,平面,,又四边形为正方形,.又、平面,且,平面..中,,为的中点,.又、平面,,平面.平面,平面平面.(2)解:过作交于,如图为的中点,,.又平面,平面.,.所以,又、、两两互相垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国蔬菜种植行业运作模式与需求潜力研究报告
- 招生年度工作计划模板(4篇)
- 线上婚礼策划保证金合同
- 国际权威展览场地出租合同
- 2025年中国终端盒市场调查研究报告
- 2025年中国碳纤维切屑市场调查研究报告
- 2025年中国直刀式裁剪机数据监测研究报告
- 方位角仪企业县域市场拓展与下沉战略研究报告
- 蛋白质结构解析-第9篇-全面剖析
- 课题申报书:一体化儿童人工智能教学服务平台研究
- 粪群移植的护理
- 企业文化与员工认同培训课件
- 古寺庙重建可行性报告
- 老年护理的专科发展课件
- 人工智能对经济的影响
- 大班语言优质课课件PPT《青蛙歌》
- 预防校园欺凌法治知识竞答题库及答案
- 意大利(百得)TBG 系列燃烧机说明书
- 污水处理设施运维服务投标方案(技术方案)
- 《交通运输概论》 课件全套 第1-7章 绪论、公路运输系统-综合运输系统
- 大学生就业创业法律实务智慧树知到课后章节答案2023年下上海建桥学院
评论
0/150
提交评论