




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西柳州二中高三下学期六校联考(2月)数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为()A. B. C. D.2.设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为.若,则的离心率为()A. B. C. D.3.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.4.在各项均为正数的等比数列中,若,则()A. B.6 C.4 D.55.已知正四面体的棱长为,是该正四面体外接球球心,且,,则()A. B.C. D.6.若复数满足,则()A. B. C.2 D.7.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.8.已知集合,则()A. B. C. D.9.要得到函数的图象,只需将函数的图象上所有点的()A.横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B.横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度10.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或911.下列函数中,图象关于轴对称的为()A. B.,C. D.12.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.四边形中,,,,,则的最小值是______.14.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为____.15.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.16.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.18.(12分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,,记的最大值与最小值分别为M,m,求的值.19.(12分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.(1)证明:;(2)求与面所成角的正弦值.20.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.21.(12分)设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1(1)求数列{an}(2)设cn=bnan,求数列22.(10分)设都是正数,且,.求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.【题目详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,∴.正三棱锥外接球球心必在上,设球半径为,则由得,解得,∴.故选:D.【题目点拨】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.2、B【解题分析】
设过点作的垂线,其方程为,联立方程,求得,,即,由,列出相应方程,求出离心率.【题目详解】解:不妨设过点作的垂线,其方程为,由解得,,即,由,所以有,化简得,所以离心率.故选:B.【题目点拨】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.3、B【解题分析】
首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【题目详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.【题目点拨】本题主要考查定积分的概念与计算,属于中等题.4、D【解题分析】
由对数运算法则和等比数列的性质计算.【题目详解】由题意.故选:D.【题目点拨】本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.5、A【解题分析】
如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【题目详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,,,在直角三角形中,,,,,,因为为重心,因此,则,因此,因此,则,故选A.【题目点拨】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.6、D【解题分析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【题目详解】解:由题意知,,,∴,故选:D.【题目点拨】本题考查复数代数形式的乘除运算,考查复数模的求法.7、A【解题分析】
在中,由余弦定理,得到,再利用即可建立的方程.【题目详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【题目点拨】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.8、B【解题分析】
计算,再计算交集得到答案【题目详解】,表示偶数,故.故选:.【题目点拨】本题考查了集合的交集,意在考查学生的计算能力.9、C【解题分析】
根据三角函数图像的变换与参数之间的关系,即可容易求得.【题目详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将向左平移个单位长度,故可得.故选:C.【题目点拨】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.10、C【解题分析】
由题意利用两个向量的数量积的定义和公式,求的值.【题目详解】解:由题意可得,求得,或,故选:C.【题目点拨】本题主要考查两个向量的数量积的定义和公式,属于基础题.11、D【解题分析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【题目详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【题目点拨】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.12、C【解题分析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【题目详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【题目点拨】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题.14、【解题分析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。15、【解题分析】
转化()为,即得解.【题目详解】由题意:().故答案为:【题目点拨】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.16、等腰三角形【解题分析】∵∴根据正弦定理可得,即∴∴∴的形状为等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案为等腰三角形,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解题分析】
(1)在上有解,,设,求导根据函数的单调性得到最值,得到答案.(2)证明,只需证,记,求导得到函数的单调性,得到函数的最小值,得到证明.【题目详解】(1)由题可得,在上有解,则,令,,当时,单调递增;当时,单调递减.所以是的最大值点,所以.(2)由,所以,要证明,只需证,即证.记在上单调递增,且,当时,单调递减;当时,单调递增.所以是的最小值点,,则,故.【题目点拨】本题考查了函数的切线问题,证明不等式,意在考查学生的综合应用能力和转化能力.18、(1);(2)【解题分析】
(1)求导.根据单调,转化为对恒成立求解(2)由(1)知,是的两个根,不妨设,令.根据,确定,将转化为.令,用导数法研究其单调性求最值.【题目详解】(1)的定义域为,.因为单调,所以对恒成立,所以,恒成立,因为,当且仅当时取等号,所以;(2)由(1)知,是的两个根.从而,,不妨设,则.因为,所以t为关于a的减函数,所以..令,则.因为当时,在上为减函数.所以当时,.从而,所以在上为减函数.所以当时,.【题目点拨】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.19、(1)证明见详解;(2)【解题分析】
(1)在折叠前的正方形ABCD中,作出对角线AC,BD,由正方形性质知,又//,则于点H,则由直二面角可知面,故.又,则面,故命题得证;(2)作出线面角,在直角三角形中求解该角的正弦值.【题目详解】解:(1)证明:在正方形中,连结交于.因为//,故可得,即又旋转不改变上述垂直关系,且平面,面,又面,所以(2)因为为直二面角,故平面平面,又其交线为,且平面,故可得底面,连结,则即为与面所成角,连结交于,在中,,在中,.所以与面所成角的正弦值为.【题目点拨】本题考查了线面垂直的证明与性质,利用定义求线面角,属于中档题.20、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解题分析】
(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【题目详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;;.所以的分布列为012.【题目点拨】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.21、(1)an=(2)Tn【解题分析】
(1)利用an与Sn的递推关系可以an的通项公式;P点代入直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安保安全协议书合同
- 烟叶运输服务合同协议书
- 柴油技术合作合同协议书
- 民航客票销售合同终止及退票及赔偿协议
- 企业融资股权众筹项目合同范本
- 环保产业股权合作合同范本
- 智能办公家具及配件购买合同模板
- 股票质押反担保及股权收益权优先受让与优先偿还合同
- 股东对公司项目融资借款及投资回报约定合同
- 旅游景区合作合同终止及旅游资源开发协议
- 昆虫生态学 第三章种群生态学课件
- 2025届天津市和平区第二十中学数学八下期末复习检测模拟试题含解析
- (五调)武汉市2025届高三年级五月模拟训练语文试卷(含答案详解)
- 政府委托经营协议书
- 江苏省南通市通州区、如东县2025届九年级下学期中考一模化学试卷(含答案)
- (高清版)DG∕TJ 08-2243-2017 市属高校建筑规划面积标准
- 良渚文化课件
- 股权无偿划转协议书
- 食品配送服务质量保障措施
- (统编2024版)七下语文期末专题总复习课件(共6个专题)新教材
- 【MOOC答案】《电力电子学》(华中科技大学)章节作业期末慕课答案
评论
0/150
提交评论