2024届河南周口市高三练习题一(全国卷II)数学试题_第1页
2024届河南周口市高三练习题一(全国卷II)数学试题_第2页
2024届河南周口市高三练习题一(全国卷II)数学试题_第3页
2024届河南周口市高三练习题一(全国卷II)数学试题_第4页
2024届河南周口市高三练习题一(全国卷II)数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南周口市高三练习题一(全国卷II)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15m3的住户的户数为()A.10 B.50 C.60 D.1402.如果实数满足条件,那么的最大值为()A. B. C. D.3.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.34.已知集合,,,则集合()A. B. C. D.5.双曲线x2a2A.y=±2x B.y=±3x6.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立7.下列不等式成立的是()A. B. C. D.8.关于函数,有下列三个结论:①是的一个周期;②在上单调递增;③的值域为.则上述结论中,正确的个数为()A. B. C. D.9.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A. B. C. D.10.函数的图象大致为()A. B.C. D.11.已知定义在上的偶函数,当时,,设,则()A. B. C. D.12.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,,则的值为________.14.的展开式中含的系数为__________.(用数字填写答案)15.若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_________.16.正四棱柱中,,.若是侧面内的动点,且,则与平面所成角的正切值的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数,求的极值;(2)证明:.(参考数据:)18.(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.19.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.20.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.21.(12分)△ABC的内角的对边分别为,已知△ABC的面积为(1)求;(2)若求△ABC的周长.22.(10分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】从频率分布直方图可知,用水量超过15m³的住户的频率为,即分层抽样的50户中有0.3×50=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C2、B【解题分析】

解:当直线过点时,最大,故选B3、A【解题分析】

由点到直线距离公式建立的等式,变形后可求得离心率.【题目详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.【题目点拨】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.4、D【解题分析】

根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【题目点拨】本题考查集合的混合运算,属基础题.5、A【解题分析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a26、C【解题分析】

写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【题目详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【题目点拨】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.7、D【解题分析】

根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【题目详解】对于,,,错误;对于,在上单调递减,,错误;对于,,,,错误;对于,在上单调递增,,正确.故选:.【题目点拨】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.8、B【解题分析】

利用三角函数的性质,逐个判断即可求出.【题目详解】①因为,所以是的一个周期,①正确;②因为,,所以在上不单调递增,②错误;③因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域.当时,,在上单调递增,所以,的值域为,③错误;综上,正确的个数只有一个,故选B.【题目点拨】本题主要考查三角函数的性质应用.9、B【解题分析】

因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【题目详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【题目点拨】本题主要考查正负角的定义以及弧度制,属于基础题.10、A【解题分析】

根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【题目详解】因为,所以是偶函数,排除C和D.当时,,,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【题目点拨】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.11、B【解题分析】

根据偶函数性质,可判断关系;由时,,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【题目详解】为定义在上的偶函数,所以所以;当时,,则,令则,当时,,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【题目点拨】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.12、D【解题分析】

本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【题目详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。【题目点拨】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。二、填空题:本题共4小题,每小题5分,共20分。13、11【解题分析】

由等差数列的下标和性质可得,由即可求出公差,即可求解;【题目详解】解:设等差数列的公差为,,又因为,解得故答案为:【题目点拨】本题考查等差数列的通项公式及等差数列的性质的应用,属于基础题.14、【解题分析】由题意得,二项式展开式的通项为,令,则,所以得系数为.15、【解题分析】

将四面体补成一个正方体,通过正方体的对角线与球的半径的关系,得到球的半径,利用球的表面积公式,即可求解.【题目详解】如图所示,将正四面体补形成一个正方体,则正四面体的外接球与正方体的外接球表示同一个球,因为正四面体的棱长为1,所以正方体的棱长为,设球的半径为,因为球的直径是正方体的对角线,即,解得,所以球的表面积为.【题目点拨】本题主要考查了有关求得组合体的结构特征,以及球的表面积的计算,其中巧妙构造正方体,利用正方体的外接球的直径等于正方体的对角线长,得到球的半径是解答的关键,着重考查了空间想象能力,以及运算与求解能力,属于基础题.16、2.【解题分析】

如图,以为原点建立空间直角坐标系,设点,由得,证明为与平面所成角,令,用三角函数表示出,求解三角函数的最大值得到结果.【题目详解】如图,以为原点建立空间直角坐标系,设点,则,,又,得即;又平面,为与平面所成角,令,当时,最大,即与平面所成角的正切值的最大值为2.故答案为:2【题目点拨】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(1)见证明【解题分析】

(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证ex﹣x1﹣xlnx﹣1>0,根据xlnx≤x(x﹣1),问题转化为只需证明当x>0时,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根据函数的单调性证明即可.【题目详解】(1),,当,,当,,在上递增,在上递减,在取得极大值,极大值为,无极大值.(1)要证f(x)+1<ex﹣x1.即证ex﹣x1﹣xlnx﹣1>0,先证明lnx≤x﹣1,取h(x)=lnx﹣x+1,则h′(x)=,易知h(x)在(0,1)递增,在(1,+∞)递减,故h(x)≤h(1)=0,即lnx≤x﹣1,当且仅当x=1时取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需证明当x>0时,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),则k′(x)=ex﹣4x+1,令F(x)=k′(x),则F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)递增,故x∈(0,1ln1]时,F′(x)≤0,F(x)递减,即k′(x)递减,x∈(1ln1,+∞)时,F′(x)>0,F(x)递增,即k′(x)递增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零点存在定理,可知∃x1∈(0,1ln1),∃x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1时,k′(x)>0,k(x)递增,当x1<x<x1时,k′(x)<0,k(x)递减,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0时,k(x)>0,原不等式成立.【题目点拨】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题.18、(1).x2+y2=1.(2)16【解题分析】

(1)直接利用极坐标方程和参数方程公式化简得到答案.(2)圆心到直线的距离为,故弦长为得到答案.【题目详解】(1),即,即,即.,故.(2)圆心到直线的距离为,故弦长为.【题目点拨】本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.19、(1)证明见解析(2)【解题分析】

(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【题目详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,,,所以,,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为【题目点拨】本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.20、(1),,表示以为圆心为半径的圆;为抛物线;(2)【解题分析】

(1)消去参数的直角坐标方程,利用,即得的直角坐标方程;(2)由直线与抛物线相切,求导可得切线斜率,再由直线与圆相切,故切线与圆心与切点连线垂直,可求解得到切点坐标,即得解.【题目详解】(1)消去参数的直角坐标方程为:.的极坐标方程.∵,.当时表示以为圆心为半径的圆;为抛物线.(2)设切点为,由于,则切线斜率为,由于直线与圆相切,故切线与圆心与切点连线垂直,故有,直线的直角坐标方程为,所以的极坐标方程为.【题目点拨】本题考查了极坐标,参数方程综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.21、(1)(2).【解题分析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为.试题解析:(1)由题设得,即.由正弦定理得.故.(2)由题设及(1)得,即.所以,故.由题设得,即.由余弦定理得,即,得.故的周长为.点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论