2024届甘肃省兰州市第四中学高三3月第一次考试数学试题_第1页
2024届甘肃省兰州市第四中学高三3月第一次考试数学试题_第2页
2024届甘肃省兰州市第四中学高三3月第一次考试数学试题_第3页
2024届甘肃省兰州市第四中学高三3月第一次考试数学试题_第4页
2024届甘肃省兰州市第四中学高三3月第一次考试数学试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省兰州市第四中学高三3月第一次考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是虚数单位,复数()A. B. C. D.2.下列函数中,既是奇函数,又是上的单调函数的是()A. B.C. D.3.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.4.已知集合,则等于()A. B. C. D.5.设,则()A. B. C. D.6.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同7.若sin(α+3π2A.-12 B.-138.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.9.如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为()A. B. C. D.10.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件11.已知向量,,且,则()A. B. C.1 D.212.若函数在时取得最小值,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足,则的最大值为______.14.函数的图象在处的切线与直线互相垂直,则_____.15.的展开式中的常数项为_______.16.平面区域的外接圆的方程是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.18.(12分)选修4—5;不等式选讲.已知函数.(1)若的解集非空,求实数的取值范围;(2)若正数满足,为(1)中m可取到的最大值,求证:.19.(12分)在数列中,,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值20.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)21.(12分)已知函数.(1)解不等式;(2)若,,,求证:.22.(10分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数.(1)写出与的直角坐标方程;(2)在什么范围内取值时,与有交点.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

利用复数的除法运算,化简复数,即可求解,得到答案.【题目详解】由题意,复数,故选D.【题目点拨】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.2、C【解题分析】

对选项逐个验证即得答案.【题目详解】对于,,是偶函数,故选项错误;对于,,定义域为,在上不是单调函数,故选项错误;对于,当时,;当时,;又时,.综上,对,都有,是奇函数.又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.故选:.【题目点拨】本题考查函数的基本性质,属于基础题.3、A【解题分析】

利用等比数列的性质可得,即可得出.【题目详解】设与的等比中项是.

由等比数列的性质可得,.

∴与的等比中项

故选A.【题目点拨】本题考查了等比中项的求法,属于基础题.4、C【解题分析】

先化简集合A,再与集合B求交集.【题目详解】因为,,所以.故选:C【题目点拨】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.5、D【解题分析】

结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【题目详解】由,即,又,即,,即,所以.故选:D.【题目点拨】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.6、A【解题分析】

设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【题目详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【题目点拨】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.7、B【解题分析】

由三角函数的诱导公式和倍角公式化简即可.【题目详解】因为sinα+3π2=3故选B【题目点拨】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.8、B【解题分析】

分别作出各个选项中的函数的图象,根据图象观察可得结果.【题目详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【题目点拨】本题考查函数单调性和值域的判断问题,属于基础题.9、A【解题分析】

设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【题目详解】设所求切线的方程为,则,联立,消去得①,由,解得,方程①为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【题目点拨】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.10、A【解题分析】

根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【题目详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.【题目点拨】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.11、A【解题分析】

根据向量垂直的坐标表示列方程,解方程求得的值.【题目详解】由于向量,,且,所以解得.故选:A【题目点拨】本小题主要考查向量垂直的坐标表示,属于基础题.12、D【解题分析】

利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值.【题目详解】解:,其中,,,故当,即时,函数取最小值,所以,故选:D【题目点拨】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【题目详解】不等式组表示的平面区域如下所示:因为可以理解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:.【题目点拨】本题考查目标函数为斜率型的规划问题,属基础题.14、1.【解题分析】

求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【题目详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率本题正确结果:【题目点拨】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.15、【解题分析】

写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.【题目详解】的展开式通项公式为:,令,所以,所以常数项为.

故答案为:.【题目点拨】本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.16、【解题分析】

作出平面区域,可知平面区域为三角形,求出三角形的三个顶点坐标,设三角形的外接圆方程为,将三角形三个顶点坐标代入圆的一般方程,求出、、的值,即可得出所求圆的方程.【题目详解】作出不等式组所表示的平面区域如下图所示:由图可知,平面区域为,联立,解得,则点,同理可得点、,设的外接圆方程为,由题意可得,解得,,,因此,所求圆的方程为.故答案为:.【题目点拨】本题考查三角形外接圆方程的求解,同时也考查了一元二次不等式组所表示的平面区域的求作,考查数形结合思想以及运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)【解题分析】

(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.【题目详解】(1)曲线的参数方程为(为参数),消去得,把,代入得,从而得的极坐标方程为,∵直线的直角坐标方程为,其倾斜角为,∴直线的极坐标方程为.(2)将代入曲线的极坐标方程分别得到,则.【题目点拨】本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.18、(1);(2)见解析.【解题分析】试题分析:(1)讨论三种情况去绝对值符号,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因为,要证,只需证,即证,只需证即可得结果.试题解析:(1)去绝对值符号,可得所以,所以,解得,所以实数的取值范围为.(2)由(1)知,,所以.因为,所以要证,只需证,即证,即证.因为,所以只需证,因为,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy设:证明:x+y-2xy==令,∴原式====当时,19、(1);(2)【解题分析】

(1)由得,两式相减可得是从第二项开始的等比数列,由此即可求出答案;(2),分类讨论,当时,,作商法可得数列为递增数列,由此可得答案,【题目详解】解:(1)因为,,两式相减得:,即,是从第二项开始的等比数列,∵∴,则,;(2),当时,;当时,设递增,,所以实数的最小值.【题目点拨】本题主要考查地推数列的应用,属于中档题.20、(1)分布列见解析;(2)406.【解题分析】

(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比较大小得到答案.【题目详解】(1)设每个人的血呈阴性反应的概率为,则.所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.依题意可知,,所以的分布列为:(2)方案②中.结合(1)知每个人的平均化验次数为:时,,此时1000人需要化验的总次数为690次,时,,此时1000人需要化验的总次数为604次,时,,此时1000人需要化验的次数总为594次,即时化验次数最多,时次数居中,时化验次数最少,而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①,当时化验次数最多可以平均减少次.【题目点拨】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.21、(1);(2)证明见解析.【解题分析】

(1)分、、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【题目详解】(1).当时,由,解得,此时;当时,不成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论