




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年江苏省扬州市江都区五校联谊九年级数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数 B.众数 C.方差 D.中位数2.抛物线的顶点为,与轴交于点,则该抛物线的解析式为()A. B.C. D.3.如图,将绕点按逆时针方向旋转后得到,若,则的度数是()A. B. C. D.4.若关于的方程有两个不相等的实数根,则的取值范围是()A. B. C. D.5.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是()A. B. C. D.6.在中,∠C=90°,∠A=2∠B,则的值是()A. B. C. D.7.若,设,,,则、、的大小顺序为()A. B. C. D.8.若,相似比为2,且的面积为12,则的面积为()A.3 B.6 C.24 D.489.观察下列四个图形,中心对称图形是()A. B. C. D.10.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)二、填空题(每小题3分,共24分)11.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是__________米.12.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数,用表示这三个数中最小的数,例如,.请结合上述材料,求_____.13.如图,在平行四边形ABCD中,E为CB延长线上一点,且BE:CE=2:5,连接DE交AB于F,则=_____________14.如图,中,点在边上.若,,,则的长为______.15.将量角器按如图所示的方式放置在三角形纸板上,使点在半圆上,点、的度数分别为、,则的大小为___________16.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程____________17.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.18.河堤横截面如图所示,堤高为4米,迎水坡的坡比为1:(坡比=),那么的长度为____________米.三、解答题(共66分)19.(10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?20.(6分)定义:如果函数C:()的图象经过点(m,n)、(-m,-n),那么我们称函数C为对称点函数,这对点叫做对称点函数的友好点.例如:函数经过点(1,2)、(-1,-2),则函数是对称点函数,点(1,2)、(-1,-2)叫做对称点函数的友好点.(1)填空:对称点函数一个友好点是(3,3),则b=,c=;(2)对称点函数一个友好点是(2b,n),当2b≤x≤2时,此函数的最大值为,最小值为,且=4,求b的值;(3)对称点函数()的友好点是M、N(点M在点N的上方),函数图象与y轴交于点A.把线段AM绕原点O顺时针旋转90°,得到它的对应线段A′M′.若线段A′M′与该函数的图象有且只有一个公共点时,结合函数图象,直接写出a的取值范围.21.(6分)已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.22.(8分)如图,一次函数的图象与反比例函数的图象交于点两点,其中点,与轴交于点.求一次函数和反比例函数的表达式;求点坐标;根据图象,直接写出不等式的解集.23.(8分)如图,函数y1=﹣x+4的图象与函数(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.24.(8分)列方程解应用题.青山村种的水稻2010年平均每公顷产6000kg,2012年平均每公顷产7260kg,求水稻每公顷产量的年平均增长率.25.(10分)如图所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,动点P从点A开始,以1mm/S的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4m/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm1.(1)写出y与x之间的函数表达式;(1)当x=1时,求四边形APQC的面积.26.(10分)如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF=90°(1)求证:△ABE∽△DEF;(2)若AB=4,延长EF交BC的延长线于点G,求BG的长
参考答案一、选择题(每小题3分,共30分)1、D【解析】去掉一个最高分和一个最低分对中位数没有影响,故选D.2、A【分析】设出抛物线顶点式,然后将点代入求解即可.【详解】解:设抛物线解析式为,将点代入得:,解得:a=1,故该抛物线的解析式为:,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.3、A【分析】根据绕点按逆时针方向旋转后得到,可得,然后根据可以求出的度数.【详解】∵绕点按逆时针方向旋转后得到∴又∵∴【点睛】本题考查的是对于旋转角的理解,能利用定义从图形中准确的找出旋转角是关键.4、D【分析】利用一元二次方程的根的判别式列出不等式即可求出k的取值范围.【详解】解:由题意得=(2k+1)2-4(k2-1)=4k+5>0解得:k>-故选D【点睛】此题主要考查了一元二次方程的根的判别式,熟记根的判别式是解题的关键.5、D【分析】先根据圆的周长公式计算出圆锥的底面周长,然后根据扇形的面积公式,即可求出圆锥侧面展开图的面积.【详解】解:圆锥的底面周长为:2×4=,则圆锥侧面展开图的面积是.故选:D.【点睛】此题考查的是求圆锥的侧面面积,掌握圆的周长公式和扇形的面积公式是解决此题的关键.6、C【分析】根据三角形内角和定理求出∠A的值,运用特殊角的三角函数值计算即可.【详解】∵∠A+∠B+∠C=180°,∠A=2∠B,∠C=90°,
∴2∠B+∠B+90°=180°,∴∠B=30°,∴∠A=60°,∴.故选:C.【点睛】本题考查了三角形内角和定理的应用以及特殊角的三角函数值,准确掌握特殊角的三角函数值是解题关键.7、B【分析】根据,设x=1a,y=7a,z=5a,进而代入A,B,C分别求出即可.【详解】解:∵,设x=1a,y=7a,z=5a,
∴=,
==1,
==1.
∴A<B<C.
故选:B.【点睛】本题考查了比例的性质,根据比例式用同一个未知数得出x,y,z的值进而求出是解题的关键.8、A【解析】试题分析:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为12,∴△DEF的面积为:12×=1.故选A.考点:相似三角形的性质.9、C【分析】根据中心对称图形的定义即可判断.【详解】在平面内,若一个图形可以绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形,根据定义可知,C选项中的图形是中心对称图形.故答案选:C.【点睛】本题考查的知识点是中心对称图形,解题的关键是熟练的掌握中心对称图形.10、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【点睛】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.二、填空题(每小题3分,共24分)11、54【解析】设建筑物的高为x米,根据题意易得△CDG∽△ABG,∴,∵CD=DG=2,∴BG=AB=x,再由△EFH∽△ABH可得,即,∴BH=2x,即BD+DF+FH=2x,亦即x-2+52+4=2x,解得x=54,即建筑物的高是54米.12、【分析】找出这三个特殊角的三角函数值中最小的即可.【详解】,,∵∴故答案为:.【点睛】本题考查了特殊角的三角函数值以及最小值等知识,解题的关键是熟特殊角的三角函数值.13、9:4【分析】先证△ADF∽△BEF,可知,根据BE:CE=2:5和平行四边形的性质可得AD:BE的值,由此得解.【详解】解:∵BE:CE=2:5,
∴BE:BC=2:3
,即BC:BE=3:2
,∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,∴AD:BE=3:2,△ADF∽△BEF,∴.故答案为:9:4.【点睛】本题考查相似三角形的性质和判定,平行四边形的性质.熟记相似三角形的面积比等于相似比的平方是解决此题的关键.14、【分析】根据相似三角形对应边成比例即可求得答案.【详解】,,,,,解得:故答案为:【点睛】本题考查了相似三角形的性质,找准对应边是解题的关键.15、【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°−30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【详解】设半圆圆心为O,连OA,OB,如图,∵∠ACB=∠AOB,而∠AOB=86°−30°=56°,∴∠ACB=×56°=28°.故答案为:28°.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.16、(30-2x)(20-x)=6×1.【解析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.可列方程(30-2x)(20-x)=6×1.17、【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案为:.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.18、8【分析】在Rt△ABC中,根据坡面AB的坡比以及BC的值,求出AC的值,再通过解直角三角形即可求出斜面AB的长.【详解】∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=•BC=4(米),∴(米)【点睛】本题考查了解直角三角形的应用----坡度坡角问题,熟练运用勾股定理是解答本题的关键.三、解答题(共66分)19、(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.20、(1)b=1,c=9;(2)b=0或b=或b=;(3)或【分析】(1)由题可知函数图象过点(3,3),(-3,-3),代入即可求出b,c的值;(2)代入函数的友好点,求出函数解析式y=x2+2bx-4b2=(x+b)2-5b2,再根据二次函数的图象及性质分三种情况分析讨论;(3)由推出,再根据“友好点”是M(2,2)N(-2,-2)旋转后M′(2,-2)A′(-4a,0),将(-4a,0)代得出,根据图象即可得出结论.【详解】解:(1)由题可知函数图象过点(3,3),(-3,-3),代入函数(),得解得:b=1,c=9;(2)由题意得另一个友好数为(-2b,-n)∴-n=4b2-4b2+c∴c=-n∴y=x2+2bx-n把(2b,n)代入y=x2+2bx-nn=4b2+4b2-n∴n=4b2∴y=x2+2bx-4b2=(x+b)2-5b2当-b<2b即b>0时∵抛物线开口向上∴在对称轴右侧,y随x增大而增大∴当x=2b时,y1=4b2当x=2时,y2=-4b2+4b+4∵y1-y2=4∴-4b2+4b+4-4b2=4∴-8b2+4b=0∴b1=0(舍)b2=当2<-b,即b<-2时在对称轴左侧,y随x增大而减小∴当x=2b时,y1=4b2当x=2时,y2=-4b2+4b+4∵y1-y2=4∴4b2+4b2-4b-4=4∴8b2-4b-8=0∴2b2-b-2=0b=(舍)当2b≤-b≤2,即-2≤b≤0时y2=-5b2当x=2时,y1=-4b2+4b+4∵y1-y2=4∴-4b2+4b+4+5b2=4∴b2+4b=0∴b1=0,b2=-4(舍)当x=2b时,y1=4b2∵y1-y2=4∴9b2=4∴b=(舍)b=∴b=0或b=或b=;(3)推出“友好点”是M(2,2)N(-2,-2)旋转后M’(2,-2)A’(-4a,0)将(-4a,0)代入当a>0时当抛物线经过A′后有两个交点∴当a<0时,当抛物线经过A′点以后,开始于抛物线有一个交点∴综上:或.【点睛】本题是一道关于二次函数的综合题目,难度很大,理解“友好点”概念,综合利用二次函数的图象及其性质以是解此题的关键.解决此题还需要较强的数形结合的能力以及较强的计算能力.21、a<2且a≠1【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,解得:a<2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax2+bx+c=0(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.22、(1)y=-x-2,y=-,(2)C(1,-3),(3)-3<x<0或x>1.【分析】(1)将点B的坐标代入一次函数中即可求出一次函数的表达式,进而求出A点坐标,然后再将A点坐标代入反比例函数中即可求出反比例函数的表达式;(2)将一次函数与反比例函数联立即可求出C点坐标;(3)根据两交点坐标及图象即可得出答案.【详解】解:(1)由点B(-2,0)在一次函数y=-x+b上,得b=-2,∴一次函数的表达式为y=-x-2,由点A(-3,m)在y=-x-2上,得m=1,∴A(-3,1),把A(-3,1)代入数y=(x<0)得k=-3,∴反比例函数的表达式为:y=-,(2)解得或∴C(1,-3)(3)当时,反比例函数的图象在一次函数图象的上方,根据图象可知此时-3<x<0或x>1.∴不等式的解集为-3<x<0或x>1.【点睛】本题主要考查反比例函数与一次函数综合,掌握待定系数法及数形结合是解题的关键.23、(1)m=3,k=3,n=3;(1)当1<x<3时,y1>y1;当x>3时,y1<y1;当x=1或x=3时,y1=y1.【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,将A坐标代入反比例解析式求出k的值;(1)利用图像,可知分x=1或x=3,1<x<3与x>3三种情况判断出y1和y1的大小关系即可.【详解】(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(1)∵A(3,1),B(1,3),∴根据图像得当1<x<3时,y1>y1;当x>3时,y1<y1;当x=1或x=3时,y1=y1.24、10%【分析】根据增长后的产
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能物流仓储数据备份与故障恢复操作规程合同
- 文化交流演出票务销售服务协议
- 股权托管与公司重组全面实施合同
- 文化创意产业园区创意设计中心运营管理承包合同
- 农业智能化温室租赁运营维护及技术支持补充协议
- 跨境保健品品牌授权及全球代理协议
- 电商企业跨境电商金融风险防控合同
- 2025至2031年中国园艺工艺品市场现状分析及前景预测报告
- 2025至2030年外六角头螺栓项目投资价值分析报告
- 2025至2030年中国芭蕾软鞋市场分析及竞争策略研究报告
- 幼升小公有住宅租赁合同(2篇)
- 彩票大数据预测分析
- 4.1基因指导蛋白质的合成(第1课时)高一下学期生物人教版必修2
- (完整)老旧小区改造施工组织设计
- 2024-2030年中国科技服务行业发展前景及投资策略分析研究报告
- 《城市轨道交通》课件
- 建筑工程材料取样送检一览表
- 电梯安装挂靠合同
- 婚姻家庭继承法期末考试复习题及参考答案
- 2024年四川省成都市中考数学试卷(含解析)
- 有机肥原材料采购合同范本
评论
0/150
提交评论