2023年山东省乐陵市九级数学九上期末经典试题含解析_第1页
2023年山东省乐陵市九级数学九上期末经典试题含解析_第2页
2023年山东省乐陵市九级数学九上期末经典试题含解析_第3页
2023年山东省乐陵市九级数学九上期末经典试题含解析_第4页
2023年山东省乐陵市九级数学九上期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年山东省乐陵市九级数学九上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形2.对于二次函数,下列描述错误的是().A.其图像的对称轴是直线=1 B.其图像的顶点坐标是(1,-9)C.当=1时,有最小值-8 D.当>1时,随的增大而增大3.已知正多边形的边心距与边长的比为,则此正多边形为()A.正三角形 B.正方形 C.正六边形 D.正十二边形4.计算(的结果为()A.8﹣4 B.﹣8﹣4 C.﹣8+4 D.8+45.二次函数图象如图,下列结论正确的是()A. B.若且,则C. D.当时,6.在中,,、的对边分别是、,且满足,则等于()A. B.2 C. D.7.下列几何体的左视图为长方形的是()A. B. C. D.8.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限9.如图,、、分别切于、、点,若圆的半径为6,,则的周长为()A.10 B.12 C.16 D.2010.把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式是()A. B.C. D.11.如图,为的直径,弦于点,若,,则的半径为()A.3 B.4 C.5 D.612.﹣2的绝对值是()A.2 B. C. D.二、填空题(每题4分,共24分)13.如图,平面直角坐标系中,等腰的顶点分别在轴、轴的正半轴,轴,点在函数的图象上.若则的值为_____.14.因式分解:ax3y﹣axy3=_____.15.反比例函数()的图象经过点A,B(1,y1),C(3,y1),则y1_______y1.(填“<,=,>”)16.某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦”演讲比赛,则恰好选中一男一女的概率是_____.17.关于x的一元二次方程x2+mx+3=0的一个根是2,则m的值为________.18.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.三、解答题(共78分)19.(8分)平安超市准备进一批书包,每个进价为元.经市场调查发现,售价为元时可售出个;售价每增加元,销售量将减少个.超市若准备获得利润元,并且使进货量较少,则每个应定价为多少20.(8分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.21.(8分)如图,点A在轴上,OA=6,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式.22.(10分)已知关于x的一元二次方程x2+x+m﹣1=1.(1)当m=1时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.23.(10分)(1)解方程:x(x﹣3)=x﹣3;(2)用配方法解方程:x2﹣10x+6=024.(10分)如图,AC是⊙O的一条直径,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.25.(12分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆高,测得,,求白塔的高.26.如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,(1)求A、B两点的坐标;(2)若△DBH与△BEH相似,试求抛物线的解析式.

参考答案一、选择题(每题4分,共48分)1、B【分析】试题分析:由tanA=1,sinB=结合特殊角的锐角三角函数值可得∠A、∠B的度数,即可判断△ABC的形状.【详解】∵tanA=1,sinB=∴∠A=45°,∠B=45°∴△ABC是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.2、C【分析】将解析式写成顶点式的形式,再依次进行判断即可得到答案.【详解】=,∴图象的对称轴是直线x=1,故A正确;顶点坐标是(1,-9),故B正确;当x=1时,y有最小值-9,故C错误;∵开口向上,∴当>1时,随的增大而增大,故D正确,故选:C.【点睛】此题考查函数的性质,熟记每种函数解析式的性质是解题的关键.3、B【分析】边心距与边长的比为,即边心距等于边长的一半,进而可知半径与边心距的夹角是15度.可求出中心角的度数,从而得到正多边形的边数.【详解】如图,圆A是正多边形的内切圆;∠ACD=∠ABD=90°,AC=AB,CD=BD是边长的一半,当正多边形的边心距与边长的比为,即如图有AB=BD,则△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多边形的中心角是90度,所以它的边数=360÷90=1.故选:B.【点睛】本题利用了正多边形与它的内切圆的关系求解,转化为解直角三角形的计算.4、B【分析】先按照平方差公式与完全平方公式计算,同时按照二次根式的除法计算,再合并即可得到答案.【详解】解:故选B.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的乘法与二次根式的除法运算是解本题的关键.5、D【分析】根据二次函数的图象得到相关信息并依次判断即可得到答案.【详解】由图象知:a<0,b>0,c>0,,∴abc<0,故A选项错误;若且,∴对称轴为,故B选项错误;∵二次函数的图象的对称轴为直线x=1,与x轴的一个交点的横坐标小于3,∴与x轴的另一个交点的横坐标大于-1,当x=-1时,得出y=a-b+c<0,故C选项错误;∵二次函数的图象的对称轴为直线x=1,开口向下,∴函数的最大值为y=a+b+c,∴,∴,故D选项正确,故选:D.【点睛】此题考查二次函数的图象,根据函数图象得到对应系数的符号,并判断代数式的符号,正确理解二次函数图象与系数的关系是解题的关键.6、B【分析】求出a=2b,根据锐角三角函数的定义得出tanA=,代入求出即可.【详解】解:a2-ab-2b2=0,

(a-2b)(a+b)=0,

则a=2b,a=-b(舍去),

则tanA==2,

故选:B.【点睛】本题考查了解二元二次方程和锐角三角函数的定义的应用,注意:tanA=.7、C【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论.详解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选C.点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形.8、C【分析】根据反比例函数中k0,图像必过二、四象限即可解题.【详解】解:∵-10,根据反比例函数性质可知,反比例函数y=﹣的图象在第二、四象限,故选C.【点睛】本题考查了反比例函数的图像和性质,属于简单题,熟悉反比例函数的性质是解题关键.9、C【分析】根据切线的性质,得到直角三角形OAP,根据勾股定理求得PA的长;根据切线长定理,得AD=CD,CE=BE,PA=PB,从而求解.【详解】∵PA、PB、DE分别切⊙O于A、B、C点,

∴AD=CD,CE=BE,PA=PB,OA⊥AP.

在直角三角形OAP中,根据勾股定理,得AP==8,

∴△PDE的周长为2AP=1.

故选C.【点睛】此题综合运用了切线长定理和勾股定理.10、D【分析】二次函数绕原点旋转,旋转后的抛物线顶点与原抛物线顶点关于原点中心对称,开口方向相反,将原解析式化为顶点式即可解答.【详解】把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式:故选:D【点睛】本题考查的是二次函数的旋转,关键是掌握旋转的规律,二次函数的旋转,平移等一般都要先化为顶点式.11、C【分析】根据题意,连接OC,通过垂径定理及勾股定理求半径即可.【详解】如下图,连接OC,∵,,∴CE=4,∵,,∴,故选:C.【点睛】本题主要考查了圆半径的求法,熟练掌握垂径定理及勾股定理是解决本题的关键.12、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.二、填空题(每题4分,共24分)13、4【分析】根据等腰三角形的性质和勾股定理求出AC的值,根据等面积法求出OA的值,OA和AC分别是点C的横纵坐标,又点C在反比例函数图像上,即可得出答案.【详解】∵△ABC为等腰直角三角形,AB=2∴BC=2,解得:OA=∴点C的坐标为又点C在反比例函数图像上∴故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C的横坐标.14、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【详解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案为:axy(x+y)(x﹣y)【点睛】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.15、>【分析】根据反比例函数的性质得出在每个象限内,y随x的增大而减小,图象在第一、三象限内,再比较即可.【详解】解:由图象经过点A,可知,反比例函数图象在第一、三象限内,y随x的增大而减小,由此可知y1>y1.【点睛】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.16、【解析】结合题意,画树状图进行计算,即可得到答案.【详解】画树状图为:共20种等可能的结果数,其中选中一男一女的结果数为12,∴恰好选中一男一女的概率是,故答案为:.【点睛】本题考查概率,解题的关键是熟练掌握树状图法求概率.17、-【分析】把x=2代入原方程可得关于m的方程,解方程即可求出m的值.【详解】解:当x=2时,,解得:m=﹣.故答案为:﹣.【点睛】本题考查了一元二次方程的解的定义,属于基础题型,熟知一元二次方程解的概念是关键.18、等【解析】根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,例如:.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.三、解答题(共78分)19、60元【分析】设定价为x元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【详解】解:设定价为x元,根据题意得(x-40)[400-10(x-50)]=6000-130x+4200=0解得:=60,=70根据题意,进货量要少,所以=60不合题意,舍去.答:售价应定为70元.【点睛】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.20、(1)a=4,k=8;(2)①E(5,);②满足条件的m的值为4或5或2.【分析】(1)把点A坐标代入直线AB的解析式中,求出a,求出点B坐标,再将点B坐标代入反比例函数解析式中求出k;(2)①确定出点D(5,4),得到求出点E坐标;②先表示出点C,D坐标,再分三种情况:当BC=CD时,判断出点B在AC的垂直平分线上,即可得出结论,当BC=BD时,表示出BC,用BC=BD建立方程求解即可得出结论,当BD=AB时,m=AB,根据勾股定理计算即可.【详解】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),△BCD是等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,当BC=BD时,B(2,4),C(m,8),∴,∴,∴m=5,当BD=AB时,,综上所述,△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5或2.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平移的性质,等腰三角形的性质,线段的垂直平分线的性质,用方程的思想解决问题是解本题的关键.21、(1)点B的坐标是;(2)【分析】(1)过点作轴,垂足为,则OA=OB=6,,解直角三角形即可;(2)可设抛物线解析式为,将A、B坐标代入即可.【详解】解:(1)如图,过点作轴,垂足为,则..又∵OA=OB=6∴点的坐标是;(2)抛物线过原点和点、,可设抛物线解析式为.将A(6,0),B代入,得,解得:,此抛物线的解析式为:.【点睛】本题考查的知识点是旋转的性质、求抛物线解析式、解直角三角形,利用旋转的性质得出点B的坐标是解此题的关键.22、(1)x1=,x2=(2)m<【分析】(1)令m=1,用公式法求出一元二次方程的根即可;(2)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【详解】(1)当m=1时,方程为x2+x﹣1=1.△=12﹣4×1×(﹣1)=5>1,∴x,∴x1,x2.(2)∵方程有两个不相等的实数根,∴△>1,即12﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>1,∴m.【点睛】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2﹣4ac.23、(1)x=3或x=1;(2)x=5【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【详解】解:(1)∵x(x﹣3)=x﹣3,∴x(x﹣3)﹣(x﹣3)=0,则(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,解得x=3或x=1;(2)∵x2﹣10x+6=0,∴x2﹣10x=﹣6,则x2﹣10x+25=﹣6+25,即(x﹣5)2=19,∴x﹣5=±,则x=5.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24、(1)见解析;(2)AD=.【分析】(1)由切线的性质可得∠BAE+∠MAB=90°,进而得∠AEB+∠AMB=90°,由等腰三角形的性质得∠MAB=∠AMB,继而得到∠BAE=∠AEB,根据等角对等边即可得结论;(2)连接BC,根据直径所对的圆周角是直角可得∠ABC=90°,利用勾股定理可求得BC=8,证明△ABC∽△EAM,可得∠C=∠AME,,可求得AM=,再由圆周角定理以及等量代换可得∠D=∠AMD,继而根据等角对等边即可求得AD=AM=.【详解】(1)∵AP是⊙O的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEB+∠AMB=90°,又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE;(2)连接BC,∵AC是⊙O的直径,∴∠ABC=90°在Rt△ABC中,AC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论