版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年宿州市重点中学数学九年级第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知是实数,则代数式的最小值等于()A.-2 B.1 C. D.2.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°3.若双曲线的图象的一支位于第三象限,则k的取值范围是()A.k<1 B.k>1 C.0<k<1 D.k≤14.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.5B.6(1+2x)=8.5C.6(1+x)2=8.5D.6+6(1+x)+6(1+x)2=8.55.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得()个馒头A.25 B.72 C.75 D.906.数据3,1,x,4,5,2的众数与平均数相等,则x的值是()A.2 B.3 C.4 D.57.如图所示,AB∥CD,∠A=50°,∠C=27°,则∠AEC的大小应为()A.23° B.70° C.77° D.80°8.如图,从点看一山坡上的电线杆,观测点的仰角是45°,向前走到达点,测得顶端点和杆底端点的仰角分别是60°和30°,则该电线杆的高度()A. B. C. D.9.如图,电线杆的高度为,两根拉线与相互垂直,,则拉线的长度为(、、在同一条直线上)()A. B. C. D.10.如图是某个几何体的三视图,该几何体是()A.长方体 B.圆锥 C.三棱柱 D.圆柱11.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是().A. B. C. D.12.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1 B.a=1 C.a=﹣1 D.a=±1二、填空题(每题4分,共24分)13.如图,一张桌子上重叠摆放了若干枚一元硬币,从三个不同方向看它得到的平面图形如图所示,那么桌上共有_______枚硬币.14.在中,,,点D在边AB上,且,点E在边AC上,当________时,以A、D、E为顶点的三角形与相似.15.一元二次方程x2=2x的解为________.16.数据﹣3,6,0,5的极差为_____.17.已知x-2y=3,试求9-4x+8y=_______18.已知关于x的方程的一个根是1,则k的值为__________.三、解答题(共78分)19.(8分)如图,已知直线与x轴、y轴分别交于点A,B,与双曲线分别交于点C,D,且点C的坐标为.(1)分别求出直线、双曲线的函数表达式.(2)求出点D的坐标.(3)利用图象直接写出:当x在什么范围内取值时?20.(8分)如图,在中,,分别是,上的点,且,连接,,.(1)求证:四边形是平行四边形;(2)若平分,,,,求的长.21.(8分)北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):ABCD厨余垃圾4001004060可回收物251402015有害垃圾5206015其它垃圾25152040求“厨余垃圾”投放正确的概率.22.(10分)已知二次函数y=a−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),23.(10分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于4.24.(10分)有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.(1)用树状图或列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率.25.(12分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且;支架BC与水平线AD垂直.,,,另一支架AB与水平线夹角,求OB的长度(结果精确到1cm;温馨提示:,,)26.先化简,再求值:(1+),其中,x=﹣1.
参考答案一、选择题(每题4分,共48分)1、C【分析】将代数式配方,然后利用平方的非负性即可求出结论.【详解】解:====∵∴∴代数式的最小值等于故选C.【点睛】此题考查的是利用配方法求最值,掌握完全平方公式是解决此题的关键.2、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.3、B【分析】根据反比例函数的性质解答即可.【详解】∵双曲线的图象的一支位于第三象限,∴k﹣1>0,∴k>1.故选B.【点睛】本题考查了反比例函数的图象与性质,反比例函数y(k≠0),当k>0时,图象在第一、三象限,且在每一个象限y随x的增大而减小;当k<0时,函数图象在第二、四象限,且在每一个象限y随x的增大而增大,熟练掌握反比例函数的性质是解答本题的关键.4、C【解析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【详解】解:由题意可得6(1+x)2=8.5,故选择C.【点睛】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.5、C【分析】设有x个大和尚,则有(100-x)个小和尚,根据馒头数=3×大和尚人数+×小和尚人数结合共分100个馒头,即可得出关于x的一元一次方程,解之即可得出结论;【详解】解:设有x个大和尚,则有(100−x)个小和尚,依题意,得:3x+(100−x)=100,解得:x=25,∴3x=75;故选:C.【点睛】本题主要考查了一元一次方程的应用,掌握一元一次方程的应用是解题的关键.6、B【分析】先根据平均数的计算方法求出平均数,根据众数的确定方法判断出众数可能值,最后根据众数和平均数相等,即可得出结论.【详解】根据题意得,数据3,1,x,4,5,2的平均数为(3+1+x+4+5+2)÷6=(15+x)÷6=2+,数据3,1,x,4,5,2的众数为1或2或3或4或5,∴x=1或2或3或4或5,∵数据3,1,x,4,5,2的众数与平均数相等,∴2+=1或2或3或4或5,∴x=﹣9或﹣3或3或9或15,∴x=3,故选:B.【点睛】此题主要考查了众数的确定方法,平均数的计算方法,解一元一次方程,掌握平均数的求法是解本题的关键.7、C【分析】根据平行线的性质可求解∠ABC的度数,利用三角形的内角和定理及平角的定义可求解.【详解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故选:C.【点睛】本题主要考查平行线的性质,三角形的内角和定理,掌握平行线的性质是解题的关键.8、A【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【详解】解:延长PQ交直线AB于点E,设PE=x.
在直角△APE中,∠PAE=45°,
则AE=PE=x;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,,∵AB=AE-BE=6,则解得:∴在直角△BEQ中,故选:A【点睛】本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.9、B【分析】先通过等量代换得出,然后利用余弦的定义即可得出结论.【详解】故选:B.【点睛】本题主要考查解直角三角形,掌握余弦的定义是解题的关键.10、D【分析】首先根据俯视图排除正方体、三棱柱,然后跟主视图和左视图排除圆锥,即可得到结论.【详解】∵俯视图是圆,
∴排除A和C,
∵主视图与左视图均是长方形,
∴排除B,
故选:D.【点睛】本题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.11、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.12、C【解析】根据一元一次方程的定义即可求出答案.【详解】由题意可知:,解得a=−1故选C.【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.二、填空题(每题4分,共24分)13、1【分析】从俯视图中可以看出最底层硬币的个数及形状,从主视图可以看出每一层硬币的层数和个数,从左视图可看出每一行硬币的层数和个数,从而算出总的个数.【详解】解:三堆硬币的个数相加得:3+4+2=1.
∴桌上共有1枚硬币.
故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.14、【解析】当时,∵∠A=∠A,∴△AED∽△ABC,此时AE=;当时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=;故答案是:.15、x1=0,x1=1【解析】试题分析:移项得x1-1x=0,即x(x-1)=0,解得x=0或x=1.考点:解一元二次方程16、1【分析】根据极差的定义直接得出结论.【详解】∵数据﹣3,6,0,5的最大值为6,最小值为﹣3,∴数据﹣3,6,0,5的极差为6﹣(﹣3)=1,故答案为1.【点睛】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.17、-3【分析】将代数式变形为9-4(x-2y),再代入已知值可得.【详解】因为x-2y=3,所以9-4x+8y=9-4(x-2y)=9-4×3=-3故答案为:-3【点睛】考核知识点:求整式的值.利用整体代入法是解题的关键.18、-1【分析】根据一元二次方程的定义,把x=1代入方程得关于的方程,然后解关于的方程即可.【详解】解:把x=1代入方程,得:1+k+3=0,解得:k=-1,故答案为:-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.三、解答题(共78分)19、(1),;(2)点D的坐标是;(3)【解析】(1)把C(-1,2)代入y1=x+m得到m的值,把C(-1,2)代入双曲线得到k的值;(2)解由两个函数的解析式组成的方程组,即可得交点坐标D;
(3)观察图象得到当-3<x<-2时一次函数的函数值比反比例函数的函数值要大.【详解】解:(1)∵点在的图象上;∴,解得,则.∵在的图象上,∴,解得,∴.(2)联立得,解得,或,∵点C的坐标是,∴点D的坐标是.(3)由图象可知,当时,【点睛】本题考查了用待定系数法求反比例函数与一次函数的解析式即反比例函数与一次函数的交点问题.解题的关键是:(1)代入点C的坐标求出m、k的值;(2)把两函数的解析式联立起来组成方程组,解方程组即可得到它们的交点坐标.(3)根据两函数图象的上下位置关系找出不等式的解集.本题考查的是反比例函数与一次函数的交点问题及也考查了数形结合的思想.20、(1)见解析;(2).【分析】(1)根据平行四边形的性质得到∠A=∠C,AD=CB,根据全等三角形的性质和平行四边形的判定定理即可得到结论;(2)根据平行线的性质和角平分线的定义得到∠DAF=∠AFD,求得AD=DF,根据勾股定理的逆定理和勾股定理即可得到结论.【详解】(1)证明:∵四边形是平行四边形,∴且.∵,∴,即,∴四边形是平行四边形.(2)解:∵,∴.∵平分,∴,∴,∴.∵四边形是平行四边形,∴,,∴.∵,,∴,∴.∵,∴,∴.【点睛】本题考查了全等三角形的判定和性质,平行四边形的性质和判定,勾股定理,矩形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.21、(1)垃圾投放正确的概率为;(2)厨余垃圾投放正确的概率为【分析】(1)画出树状图,找出所有等可能的结果,然后找出符合条件的结果数,最后根据概率公式进行求解即可;(2)用厨余垃圾正确投放量除以厨余垃圾投放量即可得答案.【详解】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:由树状图可知垃圾投放正确的概率为;(2)厨余垃圾投放正确的概率为【点睛】本题考查了树状图法或列表法求概率,正确掌握相关知识是解题的关键.22、(1),;(2)当x<或x>5时,函数值大于1.【分析】(1)把(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中级汽车维修技师工作指南
- 2025中国工业互联网平台建设与投资风险评估报告
- 2025中国基因编辑技术伦理争议与产业化突破点研究报告
- 2025年及未来5年中国蜡石碑石及其制品市场深度分析及投资战略咨询报告
- 不动产转让合同
- 2025广东韶关市乳源瑶族自治县粮食购销有限责任公司招聘粮库保管员笔试笔试历年备考题库附带答案详解2套试卷
- 煤炭采购合同
- 瑜伽馆教练合同
- 工程代建合同
- 木里木外合同
- 无机非金属面板保温装饰板外墙外保温系统应用技术规程DB21∕T 3397-2021
- 钢轨探伤发展历程目录一国外钢轨探伤发展二我国钢轨探伤发展
- 植物次生代谢过程与产物全解析
- 全国青少年科技辅导员专业水平认证笔试考题
- 《工业园区清洁生产审核指南》
- 《IBM战略人才》课件
- 《城市道路水下隧道设计规范》
- 酒店客房服务与卫生标准
- 《卖火柴的小女孩》课本剧剧本:带你感受冷暖人生(6篇)
- 材料科学与工程专业职业生涯规划
- 北京市矢量地图-可改颜色
评论
0/150
提交评论