2024届广东省深圳福田区五校联考数学九年级第一学期期末检测模拟试题含解析_第1页
2024届广东省深圳福田区五校联考数学九年级第一学期期末检测模拟试题含解析_第2页
2024届广东省深圳福田区五校联考数学九年级第一学期期末检测模拟试题含解析_第3页
2024届广东省深圳福田区五校联考数学九年级第一学期期末检测模拟试题含解析_第4页
2024届广东省深圳福田区五校联考数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省深圳福田区五校联考数学九年级第一学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个 B.2个 C.3个 D.4个2.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24 B.33 C.56 D.423.某微生物的直径为0.000005035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣54.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.6.如图,、分别与相切于、两点,点为上一点,连接,,若,则的度数为()A. B. C. D.7.如图,点C、D在圆O上,AB是直径,∠BOC=110°,AD∥OC,则∠AOD=()A.70° B.60° C.50° D.40°8.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x

-2

-1

0

1

2

y

0

4

6

6

4

观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x增大而增大.其中正确有()A.1个 B.2个 C.3个 D.4个9.如图,中,.将绕点顺时针旋转得到,边与边交于点(不在上),则的度数为()A. B. C. D.10.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1 C.与x轴有两个交点 D.顶点坐标是(1,2)11.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米 B.36米 C.米 D.米12.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知点A、B分别在反比例函数,的图象上,且,则的值为______.14.若,且一元二次方程有实数根,则的取值范围是.15.一元二次方程配方后得,则的值是__________.16.如图,是某同学制作的一个圆锥形纸帽的示意图,则围成这个纸帽的纸的面积为______.17.如图,是的中位线,是边上的中线,交于点,下列结论:①;②;③:④,其中正确的是______.(只填序号).18.连掷两次骰子,它们的点数都是4的概率是__________.三、解答题(共78分)19.(8分)如图,抛物线过点和,点为线段上一个动点(点与点不重合),过点作垂直于轴的直线与直线和抛物线分别交于点.(1)求此抛物线的解析式;(2)若点是的中点,则求点的坐标;(3)若以点为顶点的三角形与相似,请直接写出点的坐标.20.(8分)如图,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地上修建公园.其中要留出宽度相等的三条小路,且两条与平行,另一条与平行,其余部分建成花圃.(1)若花圃总面积为448平方米,求小路宽为多少米?(2)已知某园林公司修建小路的造价(元)和修建花圃的造价(元)与修建面积(平方米)之间的函数关系分别为和.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?21.(8分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.22.(10分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,(1)求点C到直线AB的距离;(2)求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)23.(10分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于点A(m,1)与点B(﹣1,﹣4).(1)求反比例函数与一次函数的解析式;(2)根据图象说明,当x为何值时,k1x+b﹣<0;(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求点P的坐标.24.(10分)某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整.

(1)自变量的取值范围是全体实数,与的几组对应值列表如下:其中,________________.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分;(3)观察函数图像,写出两条函数的性质;(4)进一步探究函数图像发现:①方程有______个实数根;②函数图像与直线有_______个交点,所以对应方程有_____个实数根;③关于的方程有个实数根,的取值范围是___________.25.(12分)将四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)在甲组的概率是多少?(2)都在甲组的概率是多少?26.已知关于x的方程(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k的取值范围

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选C.考点:平行四边形的判定2、D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.3、A【解析】试题分析:0.000005035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.4、B【分析】根据轴对称图形与中心对称图形的概念判定即可.【详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.5、B【详解】解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.6、C【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】解:连接、,∵、分别与相切于、两点,∴,,∴.∴,∴.故选C.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.7、D【分析】根据平角的定义求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD的度数.【详解】∵∠BOC=110°,∠BOC+∠AOC=180°∴∠AOC=70°∵AD∥OC,OD=OA∴∠D=∠A=70°∴∠AOD=180°−2∠A=40°故选:D.【点睛】此题考查圆内角度求解,解题的关键是熟知圆的基本性质、平行线性质及三角形内角和定理的运用.8、C【解析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故③正确.当x=-2时,y=0,根据对称性当抛物线与x轴的另一个交点坐标为x=×2+2=3.故①;当x=2时,y=4,所以在对称轴的右侧,随着x增大,y在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故②错,④对.选C.9、D【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.10、D【解析】试题解析:二次函数y=(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选D.11、B【分析】求滑下的距离,设出下降的高度,表示出水平高度,利用勾股定理即可求解.【详解】当时,,设此人下降的高度为米,过斜坡顶点向地面作垂线,在直角三角形中,由勾股定理得:,解得.故选:.【点睛】此题主要考查了坡角问题,理解坡比的意义,使用勾股定理,设未知数,列方程求解是解题关键.12、D【分析】通过画图发现,点的运动路线为以A为圆心、1为半径的圆,当在对角线CA上时,C最小,先证明△PBC≌△BA,则A=PC=1,再利用勾股定理求对角线CA的长,则得出C的长.【详解】如图,当在对角线CA上时,C最小,连接CP,

由旋转得:BP=B,∠PB=90°,

∴∠PBC+∠CB=90°,

∵四边形ABCD为正方形,

∴BC=BA,∠ABC=90°,

∴∠AB+∠CB=90°,

∴∠PBC=∠AB,在△PBC和△BA中,,

∴△PBC≌△BA,

∴A=PC=1,

在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C长度的最小值为,故选:D.【点睛】本题考查了正方形的性质、旋转的性质和最小值问题,寻找点的运动轨迹是本题的关键.二、填空题(每题4分,共24分)13、【分析】作轴于C,轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到,,再证明∽,然后利用相似三角形的性质得到的值,即可得出.【详解】解:作轴于C,轴于D,如图,点A、B分别在反比例函数,的图象上,,,,,,∽,,.故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.14、且.【解析】试题分析:∵,.∴一元二次方程为.∵一元二次方程有实数根,∴且.考点:(1)非负数的性质;(2)一元二次方程根的判别式.15、1【分析】将原方程进行配方,然后求解即可.【详解】解:∴-m+1=nm+n=1故答案为:1【点睛】本题考查配方法,掌握配方步骤正确计算是本题的解题关键.16、【分析】根据已知得出圆锥的底面半径为10cm,圆锥的侧面积=π×底面半径×母线长,即可得出答案.【详解】解:底面圆的半径为10,则底面周长=10π,

侧面面积=×10π×30=300πcm1.

故答案为:300πcm1.【点睛】本题主要考查了圆锥的侧面积公式,掌握圆锥侧面积公式是解决问题的关键,此问题是中考中考查重点.17、①②③【分析】由是的中位线可得DE∥BC、,即可利用相似三角形的性质进行判断即可.【详解】∵是的中位线∴DE∥BC、∴,故①正确;∵DE∥BC∴∴,故②正确;∵DE∥BC∴∴∴∵是边上的中线∴∴∵∴,故④错误;综上正确的是①②③;故答案是①②③【点睛】本题考查三角形的中位线、相似三角形的性质和判定,解题的关键是利用三角形的中位线得到平行线.18、【分析】首先根据题意列表,然后根据表格求得所有等可能的结果与它们的点数都是4的情况数,再根据概率公式求解即可.【详解】解:列表得:1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∴一共有36种等可能的结果,它们的点数都是4的有1种情况,∴它们的点数都是4的概率是:,故答案为:.【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、(1);(2);(3)P(,)或P(,)【分析】(1)把A点坐标和B点坐标代入,解方程组即可;

(2)用m可表示出P、N的坐标,由题意可知有P为线段MN的中点,可得到关于m的方程,可求得m的值,即可求得点的坐标;(3)用m可表示出NP,PM,AM,分当∠BNP=90°时和当∠NBP=90°时两种情况讨论即可.【详解】解:(1)抛物线经过点解得∴(2)由题意易得,直线的解析式为由,设,则,点是的中点,即∴,解得(舍)∴(3).由,设,∴,,AM=3−m,

∵△BPN和△APM相似,且∠BPN=∠APM,

∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,

当∠BNP=90°时,则有BN⊥MN,

∴N点的纵坐标为2,

∴=2,

解得m=0(舍去)或m=,

∴P(,);

当∠NBP=90°时,过点N作NC⊥y轴于点C,

则∠NBC+∠BNC=90°,NC=m,BC=−2=,

∵∠NBP=90°,

∴∠NBC+∠ABO=90°,

∴∠ABO=∠BNC,

∴Rt△NCB∽Rt△BOA,

∴,

∴m2=,

解得m=0(舍去)或m=,

∴P(,),

综上可知,当以B,P,N为顶点的三角形与△APM相似时,点P的坐标为P(,)或P(,).【点睛】本题主要考查的是一次函数的图象和应用,二次函数的图象,待定系数法求二次函数的解析式,二次函数的应用,线段的中点,勾股定理,相似三角形的判定及性质,运用了分类讨论思想.20、(1)小路的宽为2米;(2)小路的宽为2米时修建小路和花圃的总造价最低.【分析】(1)设小路的宽为米,根据面积公式列出方程并解方程即可;(2)设小路的宽为米,总造价为元,先分别表示出花圃的面积和小路的面积,然后根据已知函数关系,即可求出总造价为与小路宽的函数关系式,化为顶点式,利用二次函数的增减性求最值即可求出此时的小路的宽.【详解】解:(1)设小路的宽为米,则可列方程解得:或(舍去)答:小路的宽为2米.(2)设小路的宽为米,总造价为元,则花圃的面积为平方米,小路面积为=平方米所以整理得:∵,对称轴为x=20∴当时,随的增大而增大∴当时,取最小值答:小路的宽为2米时修建小路和花圃的总造价最低【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数增减性求最值是解决出的关键.21、(1)2s(2)①证明见解析,②【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴AF=3cm,由①知:EF平分∠AEC,∴∠AEF=∠CEF=∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴EF=3cm.22、(1)40海里;(2)小时.【分析】(1)作CD⊥AB,在Rt△ACD中,由∠CAD=30°知CD=AC,据此可得答案;(2)根据BC=求得BC的长,继而可得答案.【详解】解:(1)如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴点C到直线AB距离CD=AC=40(海里).(2)在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到达事故船C处所需的时间大约为:50÷40=(小时).【点睛】此题主要考查解直角三角形的应用,解题的关键是熟知三角函数的定义.23、(1)y1=x﹣3;;(2)x<﹣1或0<x<4;(3)点P的坐标为或(1,4)或(2,2)【分析】(1)把B点坐标代入反比例函数解析式可求得k2的值,把点A(m,1)代入求得的反比例函数的解析式求得m,然后利用待定系数法即可求得一次函数的解析式;(2)直接由A、B的坐标根据图象可求得答案;(3)设点P的坐标为,则C(m,m﹣3),由△POC的面积为3,得到△POC的面积,求得m的值,即可求得P点的坐标.【详解】解:(1)将B(﹣1,﹣4)代入得:k2=4∴反比例函数的解析式为,将点A(m,1)代入y2得,解得m=4,∴A(4,1)将A(4,1)、B(﹣1,﹣4)代入一次函数y1=k1x+b得解得k1=1,b=﹣3∴一次函数的解析式为y1=x﹣3;(2)由图象可知:x<﹣1或0<x<4时,k1x+b﹣<0;(3)如图:设点P的坐标为,则C(m,m﹣3)∴,点O到直线PC的距离为m∴△POC的面积=,解得:m=5或﹣2或1或2,又∵m>0∴m=5或1或2,∴点P的坐标为或(1,4)或(2,2).【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论