




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海南省三亚市名校九年级数学第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为()A.10% B.20% C.25% D.40%2.在平面直角坐标系中,的直径为10,若圆心为坐标原点,则点与的位置关系是()A.点在上 B.点在外 C.点在内 D.无法确定3.一元二次方程x2+4x=﹣3用配方法变形正确的是()A.(x﹣2)=1 B.(x+2)=1 C.(x﹣2)=﹣1 D.(x+2)=﹣14.用配方法解方程x2+2x﹣5=0时,原方程应变形为()A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=95.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A.1 B.1.2 C.2 D.36.已知,则()A.1 B.2 C.4 D.87.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm8.若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A.30° B.60° C.90° D.120°9.如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A. B.2 C. D.10.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.12.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于_____(结果保留根号).13.如图,已知一次函数y=kx-4的图象与x轴、y轴分别交于A、B两点,与反比例函数在第一象限内的图象交于点C,且A为BC的中点,则k=________.14.如图,把直角三角形的斜边放在定直线上,按顺时针方向在上转动两次,使它转到的位置.设,,则顶点运动到点的位置时,点经过的路线长为_________.15.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD中,AD//BC,AD=4,BC=9,点E、F分别在边AB、CD上,且EF是梯形ABCD的“比例中线”,那么=_____.16.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.17.现有6张正面分别标有数字的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根的概率为____.18.圆锥的母线长是5cm,底面半径长是3cm,它的侧面展开图的圆心角是____.三、解答题(共66分)19.(10分)在不透明的袋中有大小形状和质地等完全相同的个小球,它们分别标有数字,从袋中任意摸出一小球(不放回),将袋中的小球搅匀后,再从袋中摸出另一小球.(1)请你用列表或画树状图的方法表示摸出小球上的数字可能出现的所有结果;(2)规定:如果摸出的两个小球上的数字都是方程的根,则小明贏;如果摸出的两个小球上的数字都不是方程的根,则小亮赢.你认为这个游戏规则对小明、小亮双方公平吗?请说明理由.20.(6分)如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.21.(6分)中华鲟是国家一级保护动物,它是大型洄游性鱼类,生在长江,长在海洋,受生态环境的影响,数量逐年下降。中华鲟研究所每年定期通过人工养殖放流来增加中华鲟的数量,每年放流的中华鲟中有少数体内安装了长效声呐标记,便于检测它们从长江到海洋的适应情况,这部分中华鲟简称为“声呐鲟”,研究所收集了它们到达下游监测点A的时间t(h)的相关数据,并制作如下不完整统计图和统计表.已知:今年和去年分别有20尾“声呐鲟”在放流的96小时内到达监测点A,今年落在24<t≤48内的“声呐鲟”比去年多1尾,今年落在48<t≤72内的数据分别为49,60,68,68,1.去年20尾“声呐鲟”到达监测点A所用时间t(h)的扇形统计图今年20尾“声呐鲟”到达监测点A所用时间t(h)的频数分布直方图关于“声呐鲟”到达监测点A所用时间t(h)的统计表平均数中位数众数方差去年64.2687315.6今年56.2a68629.7(1)请补全频数分布直方图,并根据以上信息填空:a=;(2)中华鲟到达海洋的时间越快,说明它从长江到海洋的适应情况就越好,请根据上述信息,选择一个统计量说明去年和今年中哪一年中华鲟从长江到海洋的适应情况更好;(3)去年和今年该放流点共放流1300尾中华鲟,其中“声呐鲟”共有50尾,请估计今年和去年在放流72小时内共有多少尾中华鲟通过监测站A.22.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?23.(8分)如图,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.24.(8分)(1)计算:sin230°+cos245°(2)解方程:x(x+1)=325.(10分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第天的成本(元/件)与(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第天该产品的销售量(件)与(天)满足关系式.(1)第40天,该商家获得的利润是______元;(2)设第天该商家出售该产品的利润为元.①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?26.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】2019年水果产量=2017年水果产量,列出方程即可.【详解】解:根据题意得,解得(舍去)故答案为20%,选B.【点睛】本题考查了一元二次方程的应用.2、B【分析】求出P点到圆心的距离,即OP长,与半径长度5作比较即可作出判断.【详解】解:∵,∴OP=,∵的直径为10,∴r=5,∵OP>5,∴点P在外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.3、B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:∵x2+4x=﹣3,∴x2+4x+4=1,∴(x+2)2=1,故选:B.【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.4、B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.5、A【解析】利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定△ADE和△BCE边长之间的关系,利用相似比求出线段AE的长度即可.【详解】解:∵等腰Rt△ABC,BC=4,∴AB为⊙O的直径,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比为1:5,设AE=x,∴BE=5x,∴DE=-5x,∴CE=28-25x,∵AC=4,∴x+28-25x=4,解得:x=1.故选A.【点睛】题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.6、C【分析】根据比例的性质得出再代入要求的式子,然后进行解答即可.【详解】解:∵,∴a=4b,c=4d,∴,故选C.【点睛】此题考查了比例的性质,熟练掌握比例线段的性质是解题的关键,是一道基础题.7、B【详解】由题意可知,在直角三角形中,30°角所对的直角边等于斜边的一半,所以斜边=2×2=4cm.考点:含30°的直角三角形的性质.8、B【解析】试题分析:∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.故选B.【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.9、D【分析】首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,
∴tan∠BFE=.故选:D【点睛】此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答.10、B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=.
故选B.二、填空题(每小题3分,共24分)11、(7+6)【解析】过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE=(m),
∵背水坡的坡比为1.2:1,
∴,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6=(7+6)m,
故答案为(7+6)m.【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.12、【分析】如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,根据等边三角形的性质可求出AB的长,根据相似三角形的性质可得△ADE是等边三角形,可得出AE的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH=HF=x,利用∠EFH的正确可用x表示出EH的长,根据AE=EH+AH列方程可求出x的值,根据三角形面积公式即可得答案.【详解】如图,过点F作FH⊥AE交AE于H,过点C作CM⊥AB交AB于M,∵△ABC是面积为的等边三角形,CM⊥AB,∴×AB×CM=,∠BCM=30°,BM=AB,BC=AB,∴CM==,∴×AB×=,解得:AB=2,(负值舍去)∵△ABC∽△ADE,△ABC是等边三角形,∴△ADE是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF=∠BAD=45°,∵FH⊥AE,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=x.∵AB=2AD,AD=AE,∴AE=AB=1,∴x+x=1,解得x=.∴S△AEF=×1×=.故答案为:.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.13、4【详解】把x=0代入y=kx-4,得y=-4,则B的坐标为(0,-4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入,得x=2,∴C点的坐标为(2,4),把C(2,4)的坐标代入y=kx-4,得2k-4=4,解得k=4,故答案为4.14、【分析】根据题意得到直角三角形在直线上转动两次点A分别绕点B旋转120°和绕C″旋转90°,将两条弧长求出来加在一起即可.【详解】解:在Rt△ABC中,∵BC=1,,∴AB=2,∠CBA=60°,∴弧AA′=;弧A′A′′=;∴点A经过的路线的长是;故答案为:.【点睛】本题考查了弧长的计算方法及勾股定理,解题的关键是根据直角三角形的转动过程判断点A是以那一点为圆心转动多大的角度.15、【分析】先利用比例中线的定义,求出EF的长度,然后由梯形ADFE相似与梯形EFCB,得到,即可得到答案.【详解】解:如图,∵EF是梯形的比例中线,∴,∴,∵AD//BC,∴梯形ADFE相似与梯形EFCB,∴;故答案为:.【点睛】本题考查了相似四边形的性质,以及比例中项的定义,解题的关键是熟练掌握相似四边形的性质和比例中线的性质.16、6.【分析】作辅助线,根据反比例函数关系式得:S△AOD=,S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵点A为函数y=(x>0)的图象上一点,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案为6.17、【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,
∴4-4(a-2)≥0,
∴a≤1,
∴a=-1,0,1,2,1.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.18、216°.【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.三、解答题(共66分)19、(1)见解析;(2)公平,理由见解析.【分析】(1)可以利用树状图表示出所有的可能出现的结果;
(2)分别求得两人赢的概率,判断是否相等即可求解.【详解】(1)利用树状图表示为:;(2)公平;解方程得:,根据树状图知,共有12种情况,小明赢的情况有:3,4和4,3两种,因而小明赢的概率是:,小亮赢的情况有:1,2和2,1两种,小亮赢的概率是:小亮赢的概率是:,两人赢的机会相等,因而双方公平.【点睛】本题主要考查了列表法和树状图法、游戏公平性的判断,一元二次方程的求解.解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20、(1)CG与⊙O相切,理由见解析;(1)见解析;(3)DE=1【解析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,据此即可得证;(1)证△ABC∽△FBO得,结合AB=1BO即可得;(3)证ECD∽△EGC得,根据CE=3,DG=1.5知,解之可得.【详解】解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG与⊙O相切;(1)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=1BO,∴1OB1=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=1∠F,又∵∠DCE=1∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴,∵CE=3,DG=1.5,∴,整理,得:DE1+1.5DE﹣9=0,解得:DE=1或DE=﹣4.5(舍),故DE=1.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.21、(1)2;(2)见详解;(3)1560【分析】(1)先求出去年落在48<t≤72内的数据个数,从而根据“今年落在24<t≤48内的“声呐鲟”比去年多1尾”得到今年落在48<t≤72内的数据个数,继而根据各时间段的数据和为20求出24<t≤48内的数据个数,从而补全图形,最后根据中位数的概念求解可得;(2)从平均数上看去年“声呐鲟”到达下游监测点的平均时间为2.2小时,而今年“声呐鲟”到达下游监测点的平均时间为56.2小时,缩短了8小时,答案不唯一,合理即可;(3)用总数量乘以放流72小时内通过监测站A的对应的百分比求出去年、今年的数量,求和即可得.【详解】解:(1)去年落在48<t≤72内的数据有20×(个),∴今年落在48<t≤72内的数据为5,则今年24<t≤48内的“声呐鲟”数量为20-(5+5+7)=3,补全图形如下:∵今年“声呐鲟”到达下游监测点时间的第10、11个数据为60、68,∴a=,故答案为:2.(2)选择平均数,由表可知,去年“声呐鲟”到达下游监测点的平均时间为2.2小时,而今年“声呐鲟”到达下游监测点的平均时间为56.2小时,缩短了8小时,所以今年“声呐鲟”从长江到海洋的适应情况更好(答案不唯一,合理即可).(3)去年和今年在放流72小时内中华鲟通过监测站A的数量为1300×(1-45%)+1300×=15+845=1560(尾).【点睛】此题考查了频数分布直方图、条形统计图,平均数,中位数,众数,以及用样本估计总体,弄清题意是解本题的关键.22、当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.【解析】试题分析:利用销售利润=售价-进价,根据题中条件可以列出利润与的关系式,求出即可.试题解析:设每个商品的定价是元.由题意,得整理,得解得都符合题意.答:当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.23、54°.【分析】求∠AOC的度数,可以转化为求∠C与∠E的问题.【详解】解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∠E=18°,∴∠DOE=∠E=18°,∴∠ODC=36°,同理∠C=∠ODC=36°∴∠AOC=∠E+∠OCE=54°.【点睛】本题主要考查了三角形的外角和定理,外角等于不相邻的两个内角的和.24、(1);(2)x1=,x2=.【分析】(1)sin30°=,cos45°=,sin230°+cos245°=()2+()2=(2)用公式法:化简得,a=1,b=1,c=-3,b-4ac=13,∴x=.【详解】解:(1)原式=()2+()2=;(2)x(x+1)=3,x2+x﹣3=0,∵a=1,b=1,c=﹣3,b﹣4ac=1﹣4×1×(﹣3)=13,∴x==,∴x1=,x2=.【点睛】本题的考点是三角函数的计算和解一元二次方程.方法是熟记特殊三角形的三角函数及几种常用的解一元二次方程的方法.25、(1)1000(2)①,25,1225;②1.【分析】(1)根据图象可求出BC的解析式,即可求出第40天时的成本为60元,此时的产量为z=40+10=50,则可求得第40天的利润;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)根据图象得,B(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年版上海市劳动合同范本
- 长距离铁路轨道铺设技术与施工方案
- 物流行业知识培训课件
- Unit 6 Rain or Shine第三课时Grammar Focus说课稿 2024-2025学年人教版(2024)七年级英语下册
- 2025医学心脏瓣膜病处理考试题目及答案
- 查新报告规范流程与模板设计研究
- 2025至2030操作员接口外壳行业市场深度研究及发展前景投资可行性分析报告
- 2025至2030戊唑醇行业市场深度研究及发展前景投资可行性分析报告
- 2025成年人化学化学反应动力学考试题目及答案
- 物流流程标准课件
- 《高等数学》说课文档
- 运动训练学PPT-运动训练学
- 2023新教材高中数学第5章三角函数微专题5三角函数中的最值问题课件新人教A版必修第一册
- 入厂新员工安全知识培训考试题及答案
- F500-1000泥浆泵说明书
- 一年级上学期家长会数学老师发言稿(共17张PPT)
- (11.7.1)-12.7-肺性脑病病理生理学
- 医药电子商务复习题
- SH/T 0356-1996燃料油
- GB/T 1303.4-2009电气用热固性树脂工业硬质层压板第4部分:环氧树脂硬质层压板
- 新编剑桥商务英语
评论
0/150
提交评论