




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北承德市隆化县数学九年级第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.的值等于()A. B. C.1 D.2.下列说法正确的是()A.等弧所对的圆心角相等B.三角形的外心到这个三角形的三边距离相等C.经过三点可以作一个圆D.相等的圆心角所对的弧相等3.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A. B. C. D.4.如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,且DE将△ABC分成面积相等的两部分,那么的值为()A.﹣1 B.+1 C.1 D.5.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽1.8米,最深处水深1.2米,则此输水管道的直径是()A.1.5 B.1 C.2 D.46.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4 B.或4 C.或6 D.4或67.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:28.下图中,不是中心对称图形的是()A. B. C. D.9.函数的自变量的取值范围是()A. B. C. D.且10.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.12.如图,正方形的边长为,在边上分别取点,,在边上分别取点,使.....依次规律继续下去,则正方形的面积为__________.13.如图,矩形中,,,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_________.14.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=,那么BC=____________.15.若二次函数的图象开口向下,则实数a的值可能是___________(写出一个即可)16.一圆锥的侧面积为,底面半径为3,则该圆锥的母线长为________.17.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.18.如图,是的边上一点,且点的横坐标为3,,则______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知抛物线与直线都经过、两点,该抛物线的顶点为C.(1)求此抛物线和直线的解析式;(2)设直线与该抛物线的对称轴交于点E,在射线上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线下方抛物线上的一动点,当面积最大时,求点P的坐标,并求面积的最大值.20.(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.21.(6分)如图,一位篮球运动员在离篮圈水平距离4处跳起投篮,球运行的高度()与运行的水平距离()满足解析式,当球运行的水平距离为1.5时,球离地面高度为2.2,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为2.35.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8,这次跳投时,球在他头顶上方3.25处出手,问球出手时,他跳离地面多高?22.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)23.(8分)如图,正方形ABCD中,E,F分别是AB,BC边上的点,AF与DE相交于点G,且AF=DE.求证:(1)BF=AE;(2)AF⊥DE.24.(8分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆高,测得,,求白塔的高.25.(10分)如图,在平面直角坐标系中,反比例函数的图象过等边三角形的顶点,,点在反比例函数图象上,连接.(1)求反比例函数的表达式;(2)若四边形的面积是,求点的坐标.26.(10分)已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据特殊角的三角函数值,即可得解.【详解】.故选:A.【点睛】此题属于容易题,主要考查特殊角的三角函数值.失分的原因是没有掌握特殊角的三角函数值.2、A【解析】试题分析:A.等弧所对的圆心角相等,所以A选项正确;B.三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C.经过不共线的三点可以作一个圆,所以C选项错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选C.考点:1.确定圆的条件;2.圆心角、弧、弦的关系;3.三角形的外接圆与外心.3、B【解析】直接利用概率公式计算得出答案.【详解】共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,参赛同学抽到每一类别的可能性相同,小宇参赛时抽到“生态知识”的概率是:.故选B.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.4、D【分析】由条件DE∥BC,可得△ADE∽△ABC,又由DE将△ABC分成面积相等的两部分,可得S△ADE:S△ABC=1:1,根据相似三角形面积之比等于相似比的平方,可得答案.【详解】如图所示:∵DE∥BC,∴△ADE∽△ABC.设DE:BC=1:x,则由相似三角形的性质可得:S△ADE:S△ABC=1:x1.又∵DE将△ABC分成面积相等的两部分,∴x1=1,∴x,即.故选:D.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.5、B【解析】试题分析:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×1.8=1.4米,设OA=r,则OD=r﹣DE=r﹣1.2,在Rt△OAD中,OA2=AD2+OD2,即r2=1.42+(r﹣1.2)2,解得r=1.5米,故此输水管道的直径=2r=2×1.5=1米.故选B.考点:垂径定理的应用.6、D【分析】分两种情形:当时,,设,,可得,解出值即可;当时,过点作,可得,得出,,则,证明,得出方程求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,设,,①当时,可得,,,,.②当时,如图2中,过点作,可得,,,,,,,,,,,,.综上所述,或1.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.7、D【分析】根据题意得出△DEF∽△BCF,进而得出,利用点E是边AD的中点得出答案即可.【详解】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴,∵点E是边AD的中点,∴AE=DE=AD,∴.故选D.8、D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、是中心对称图形,故此选项不合题意;
B、是中心对称图形,故此选项不合题意;
C、是中心对称图形,故此选项不合题意;
D、不是中心对称图形,故此选项符合题意;
故选:D.【点睛】考查了中心对称图形,关键是掌握中心对称图形定义.9、C【解析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】由题意得,且,
解得:.
故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.10、D【解析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,所以∠ANM=∠AEB,则可求得②正确;根据三角形的外角的性质得到①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,再根据相似三角形的性质得到EF=MN,于是得到S△AEF=2S△AMN.故④正确.【详解】如图,把△ADF绕点A顺时针旋转90°得到△ABH由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正确∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正确,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正确连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正确故选D.【点睛】此题考查相似三角形全等三角形的综合应用,熟练掌握相似三角形,全等三角形的判定定理是解决此类题的关键.二、填空题(每小题3分,共24分)11、【解析】试题分析:,解得r=.考点:弧长的计算.12、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面积,同理可求出正方形A2B2C2D2的面积,得出规律即可得答案.【详解】∵正方形ABCD的边长为a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面积为a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面积为()2a2,……∴正方形的面积为()na2,故答案为:()na2【点睛】本题考查正方形的性质及勾股定理,正确计算各正方形的面积并得出规律是解题关键.13、【分析】阴影部分的面积为扇形BDM的面积加上扇形CDN的面积再减去直角三角形BCD的面积即可.【详解】解:∵,∴根据矩形的性质可得出,∵∴∴利用勾股定理可得出,因此,可得出故答案为:.【点睛】本题考查的知识点是求不规则图形的面积,熟记扇形的面积公式是解此题的关键.14、2【分析】根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.【详解】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,
∴AN=CN,AM=BM,
∴BC=2MN,
∵MN=,∴BC=2,故答案为:2.【点睛】本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.15、-2(答案不唯一,只要是负数即可)【分析】根据二次函数的图像和性质进行解答即可【详解】解:∵二次函数的图象开口向下,∴a<0∴取a=-2故答案为:-2(答案不唯一,只要是负数即可)【点睛】本题考查了二次函数的图像和性质,熟练掌握相关知识是解题的关键,题目较简单16、2【分析】圆锥的侧面积=底面周长×母线长÷1.【详解】解:底面半径为3,则底面周长=6π,设圆锥的母线长为x,圆锥的侧面积=×6πx=12π.解得:x=2,故答案为2.17、15π.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.18、【分析】由已知条件可得出点P的纵坐标为4,则就等于点P的纵坐标与其横坐标的比值.【详解】解:由题意可得,∵,∴点P的纵坐标为4,∴就等于点P的纵坐标与其横坐标的比值,∴.故答案为:.【点睛】本题考查的知识点是正弦与正切的定义,熟记定义内容是解此题的关键.三、解答题(共66分)19、(1)抛物线的解析式为,直线的解析式为,(2)或.(3)当时,面积的最大值是,此时P点坐标为.【解析】(1)将、两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则,分两种情况讨论:①若点M在x轴下方,四边形为平行四边形,则,②若点M在x轴上方,四边形为平行四边形,则,设,则,可分别得到方程求出点M的坐标;(3)如图,作轴交直线于点G,设,则,可由,得到m的表达式,利用二次函数求最值问题配方即可.【详解】解:(1)∵抛物线经过、两点,∴,∴,∴抛物线的解析式为,∵直线经过、两点,∴,解得:,∴直线的解析式为,(2)∵,∴抛物线的顶点C的坐标为,∵轴,∴,∴,①如图,若点M在x轴下方,四边形为平行四边形,则,设,则,∴,∴,解得:,(舍去),∴,②如图,若点M在x轴上方,四边形为平行四边形,则,设,则,∴,∴,解得:,(舍去),∴,综合可得M点的坐标为或.(3)如图,作轴交直线于点G,设,则,∴,∴,∴当时,面积的最大值是,此时P点坐标为.【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.20、(1)0.3,45;(2)108°;(3).【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)当球运行的水平距离为时,达到最大高度为;(2)球出手时,他跳离地面3.2.【分析】(1)根据待定系数法,即可求解;(2)令时,则,进而即可求出答案.【详解】(1)依题意得:抛物线经过点和,∴,解得:,∴,∴当球运行的水平距离为时,达到最大高度为;(2)∵时,,∴,即球出手时,他跳离地面3.2.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质,是解题的关键.22、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、(1)见解析;(2)见解析.【解析】(1)根据正方形的性质得到AD=AB,∠DAE=∠ABE=90°,根据全等三角形的性质即可得到结论;
(2)根据全等三角形的性质得到∠ADE=∠BAF,根据余角的性质即可得到结论.【详解】证明:(1)∵四边形ABCD是正方形,∴AD=AB,∠DAE=∠ABE=90°,
在Rt△DAE与Rt△ABF中,AD=ABDE=AF,
∴Rt△DAE≌Rt△ABF(HL),
∴BF=AE;
(2)∵Rt△DAE≌Rt△ABF,
∴∠ADE=∠BAF,
∵∠ADE=∠AED=90°,
∴∠BAF=∠AEG=90°,
∴∠AGE=90°,
【点睛】本题考查正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.24、为米.【分析】先证明,然后利用相似三角形的性质得到,从而代入求值即可.【详解】解:依题意,得,,∴.∵,∴,∴.∵,,,∴,∴,∴,∴白塔的高为米.【点睛】本题考查相似三角形的实际应用,掌握相似三角形对应边成比例是本题的解题关键.25、(1)(2)【解析】(1)先求出B的坐标,根据系数k的几何意义即可求得k=,从而求得反比例函数的表达式;(2)根据题意可,求出,再设,求出t,即可解答【详解】(1),反比例函数的表达式为(2)设【点睛】此题考查了反比例函数解析式,不规则图形面积.,解题关键在于求出B的坐标26、(1),;(2)的最大值为1【分析】(1)作辅助线,过点A作AE⊥PB于点E,在Rt△PAE中,已知∠APE,AP的值,根据三角函数可将AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根据勾股定理可将AB的值求出;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业并购战略中的风险分析试题及答案
- 2025年软考实务练习工具试题及答案
- 敏捷开发模式下的案例分析试题及答案
- 网络管理员职场技能组成试题及答案
- 理解企业软件开发的生命周期模型试题及答案
- 2025年法学概论的解题思路与试题及答案
- 2025届河北省枣强县数学七下期末检测模拟试题含解析
- 未来企业风险监控机制的试题及答案
- 软件开发技术栈的选择与评估试题及答案
- 国际法的有效性分析及试题及答案
- 教科版六下科学全册课时练(含答案)
- GB/T 18781-2023珍珠分级
- GA/T 544-2021多道心理测试系统通用技术规范
- 年代小说先锋小说
- 【超星尔雅学习通】世界建筑史网课章节答案
- (52)-疱疹性咽峡炎小儿推拿探秘
- 土建施工员培训课件
- 新音乐初放 学堂乐歌说课课件
- GMP体系文件(手册+程序)
- 陕西延长石油四海煤化工有限公司金属镁厂1万吨-年金属镁生产项目环评报告
- 集电线路安装工程质量通病防治
评论
0/150
提交评论