




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河源市重点中学九年级数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC:AB=2:5,则S△ADC:S△BDC是()A.3:19 B. C.3: D.4:212.点关于原点的对称点是A. B. C. D.3.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-84.2的相反数是()A. B. C. D.5.如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=130°,则∠DCE的度数为()A.45° B.50° C.65° D.75°6.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为().A.4 B.6 C.8 D.127.若α为锐角,且,则α等于()A. B. C. D.8.如图,矩形的对角线交于点,已知,,下列结论错误的是()A. B. C. D.9.下列图形中,是中心对称图形的是()A. B. C. D.10.若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则2019﹣2a+2b的值等于()A.2015 B.2017 C.2019 D.202211.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于()A.2m B.4m C.10m D.16m12.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是()A.4 B.5 C.6 D.二、填空题(每题4分,共24分)13.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.14.已知1是一元二次方程的一个根,则p=_______.15.如果抛物线经过原点,那么______.16.如图AC,BD是⊙O的两条直径,首位顺次连接A,B,C,D得到四边形ABCD,若AD=3,∠BAC=30°,则图中阴影部分的面积是______.17.如图,是的两条切线,为切点,点分别在线段上,且,则__________.18.如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.三、解答题(共78分)19.(8分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(8分)某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与每天销售量y(件)之间的关系如下表.x(元/件)15182022…y(件)250220200180…(1)直接写出:y与x之间的函数关系;(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w(元)与销售单价x(元/件)之间的函数关系;(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?21.(8分)北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):ABCD厨余垃圾4001004060可回收物251402015有害垃圾5206015其它垃圾25152040求“厨余垃圾”投放正确的概率.22.(10分)如图,在矩形中,分别从同时出发,分别沿边移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.己知移动段时间后,若,.当为何值时,以为顶点的四边形是平行四边形?23.(10分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.24.(10分)解一元二次方程:.25.(12分)解方程(1)(2)26.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的a,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的b,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y轴右侧的概率.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据已知条件易证△ADC∽△ABC,再利用相似三角形的性质解答即可.【详解】∵在△ABC中,∠ACB=90°,CD⊥AB于点D,∴∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ABC,∴AC:AB=2:5,是相似比,∴S△ADC:S△ABC=4:25,∴S△ADC:S△BDC=4:(25﹣4)=4:21,故选D.【点睛】本题考查了相似三角形的判定和性质,证明△ADC∽△ABC是解决问题的关键.2、C【解析】解:点P(4,﹣3)关于原点的对称点是(﹣4,3).故选C.【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,两个点的横、纵坐标符号相反,即P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3、C【分析】先将该方程化为一般形式,即可得出结论.【详解】解:先将该方程化为一般形式:.从而确定二次项系数为5,一次项系数为-6,常数项为8故选C.【考点】此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.4、D【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,
故选D.5、C【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质得出∠DCE=∠A,代入求出即可.【详解】∵∠BOD=130°,∴∠A=∠BOD=65°,∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=65°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质的应用,注意:圆内接四边形的对角互补,并且一个外角等于它的内对角.6、A【解析】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半).∴⊙O的半径4.故选A.7、B【解析】根据得出α的值.【详解】解:∵∴α-10°=60°,
即α=70°.
故选:B.【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.8、B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A选项正确;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B选项错误;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.9、D【分析】根据中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,逐一判断即可.【详解】解:A选项不是中心对称图形,故本选项不符合题意;B选项不是中心对称图形,故本选项不符合题意;C选项不是中心对称图形,故本选项不符合题意;D选项是中心对称图形,故本选项符合题意;故选D.【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.10、A【分析】将x=﹣1代入方程得出a﹣b=2,再整体代入计算可得.【详解】解:将x=﹣1代入方程,得:a﹣b﹣2=0,则a﹣b=2,∴原式=2019﹣2(a﹣b)=2019﹣2×2=2019﹣4=2015故选:A.【点睛】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的概念及整体代入思想的运算.11、B【分析】根据题意,水面宽度AB为20则B点的横坐标为10,利用B点是函数为图象上的点即可求解y的值即DO【详解】根据题意B的横坐标为10,把x=10代入,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面与桥拱顶的高度DO等于4m.故选B.【点睛】本题考查了点的坐标及二次函数的实际应用.12、C【分析】连接,,如图,利用圆周角定理可判定点在上,易得,,,,,设,则,由于表示点到原点的距离,则当为直径时,点到原点的距离最大,由于为平分,则,利用点在圆上得到,则可计算出,从而得到的最大值.【详解】解:连接,,如图,,为的直径,点在上,,,,,,,设,,而表示点到原点的距离,当为直径时,点到原点的距离最大,为平分,,,,即,此时,即的最大值是1.故选:.【点睛】本题考查了点与圆的位置关系、圆周角定理、勾股定理等,作出辅助线,得到是解题的关键.二、填空题(每题4分,共24分)13、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【点睛】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14、2【分析】根据一元二次方程的根即方程的解的定义,将代入方程中,即可得到关于的方程,解方程即可得到答案.【详解】解:∵1是一元二次方程的一个根∴∴故答案是:【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.15、1【分析】把原点坐标代入中得到关于m的一次方程,然后解一次方程即可.【详解】∵抛物线经过点(0,0),∴−1+m=0,∴m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.16、【分析】首先证明△BOC是等边三角形及△OBC≌△AOD(SAS),进而得出S△AOD=S△DOC=S△BOC=S△AOB,得到S阴=2•S扇形OAD,再利用扇形的面积公式计算即可;【详解】解:∵AC是直径,
∴∠ABC=∠ADC=90°,
∵∠BAC=30°,AD=3,
∴AC=2AD=6,∠ACB=60°,∴OA=OC=3,
∵OC=OB=OA=OD,
∴△OBC与△AOD是等边三角形,
∴∠BOC=∠AOD=60°,∴△OBC≌△AOD(SAS)又∵O是AC,BD的中点,
∴S△AOD=S△DOC=S△BOC=S△AOB,
∴S阴=2•S扇形OAD=,故答案为:.【点睛】本题考查扇形的面积公式、解直角三角形、等边三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17、61°【分析】根据切线长定理,可得PA=PB,然后根据等腰三角形的性质和三角形的内角和定理即可求出∠FAD=∠DBE=61°,利用SAS即可证出△FAD≌△DBE,从而得出∠AFD=∠BDE,然后根据三角形外角的性质即可求出∠EDF.【详解】解:∵是的两条切线,∠P=58°∴PA=PB∴∠FAD=∠DBE=(180°-∠P)=61°在△FAD和△DBE中∴△FAD≌△DBE∴∠AFD=∠BDE,∵∠BDF=∠BDE+∠EDF=∠AFD+∠FAD∴∠EDF=∠FAD=61°故答案为:61°【点睛】此题考查的是切线长定理、等腰三角形的性质、三角形的内角和定理、全等三角形的判定及性质和三角形外角的性质,掌握切线长定理、等边对等角和全等三角形的判定及性质是解决此题的关键.18、【解析】连接OB,OA,过O作,得到,求得,连接IA,IB,根据角平分线的定义得到,,根据三角形的内角和得到,设A,B,I三点所在的圆的圆心为,连接,,得到,根据等腰三角形的性质得到,连接,解直角三角形得到,根据弧长公式即可得到结论.【详解】解:连接OB,OA,过O作,,,在Rt中,,,,,连接IA,IB,点I为的内心,,,,,点P为弧AB上动点,始终等于,点I在以AB为弦,并且所对的圆周角为的一段劣弧上运动,设A,B,I三点所在的圆的圆心为,连接,,则,,,连接,,,,点I移动的路径长故答案为:【点睛】本题考查了三角形的内切圆与内心,解直角三角形,弧长公式以及圆周角定理,根据题意作出辅助线,构造出全等三角形,得出点I在以AB为弦,并且所对的圆周角为的一段劣弧上是解答此题的关键.三、解答题(共78分)19、1米.【分析】过A作AE⊥CD垂足为E,设AE=x米,再利用锐角三角函数关系得出BE=x,CE=x,根据BC=BE﹣CE,得到关于x的方程,即可得出答案.【详解】解:过A作AE⊥CD垂足为E,设AE=x米,在Rt△ABE中,tan∠B=,∴BE==x,在Rt△ABE中,tan∠ACD=,∴CE==x,∵BC=BE﹣CE,∴x﹣x=150,解得:x=1.答:小岛A到公路BD的距离为1米.【点睛】本题考查了三角函数和一元一次方程的问题,掌握特殊三角函数值和解一元一次方程的方法是解题的关键.20、(1)y=﹣10x+1;(2)w=﹣10x2+500x﹣10;(3)销售单价定为25元时,每天销售利润最大,最大销售利润2250元.【分析】(1)根据题意得出日销售量y是销售价x的一次函数,再利用待定系数法求出即可;(2)根据销量×每件利润=总利润,即可得出所获利润W为二次函数;(3)将(2)中的二次函数化为顶点式,确定最值即可.【详解】(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则,解得:.故y与x之间的函数关系式为:y=﹣10x+1.故答案为:y=﹣10x+1.(2)w与x的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+1)=﹣10x2+500x﹣10;(3)w=﹣10x2+500x﹣10=﹣10(x﹣25)2+2250,因为﹣10<0,所以当x=25时,w有最大值.w最大值为2250,答:销售单价定为25元时,每天销售利润最大,最大销售利润2250元.【点睛】本题考查了二次函数的应用及二次函数最大值求法,难度适中,解答本题的关键是根据题意,逐步求解,由易到难,搞清楚这两个函数之间的联系.21、(1)垃圾投放正确的概率为;(2)厨余垃圾投放正确的概率为【分析】(1)画出树状图,找出所有等可能的结果,然后找出符合条件的结果数,最后根据概率公式进行求解即可;(2)用厨余垃圾正确投放量除以厨余垃圾投放量即可得答案.【详解】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:由树状图可知垃圾投放正确的概率为;(2)厨余垃圾投放正确的概率为【点睛】本题考查了树状图法或列表法求概率,正确掌握相关知识是解题的关键.22、2或【分析】根据平行四边形的性质,得,分两种情况:①当点在点的左侧时,②当点在点的右侧时,分别列出关于x的方程,即可求解.【详解】∵在矩形中,AD∥BC,∴以为顶点的四边形是平行四边形时,.①当点在点的左侧时,由,得:,解得:(舍去),;②当点在点的右侧时,由,得:,解得:(舍去);综上所述:当=2或时,以为顶点的四边形是平行四边形.【点睛】本题主要考查一元二次方程与平行四边形的性质综合,根据等量关系,列出方程,时是解题的关键.23、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),当x=3时,S有最大值;(3)(0,﹣)【分析】(1)设出解析式,由待定系数法可得出结论;(2)点E在抛物线上,用x去表示y,结合三角形面积公式即可得出三角形OEB的面积S与x之间的函数关系式,再由E点在x轴下方,得出1<x<1,将三角形OEB的面积S与x之间的函数关系式配方,即可得出最值;(3)找出D点关于y轴对称的对称点D′,结合三角形内两边之和大于第三边,即可确定当MD+MB最小时M点的坐标.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,则,解得:.故抛物线解析式为y=x2﹣4x+.(2)过点E作EF⊥x轴,垂足为点F,如图1所示.E点坐标为(x,x2﹣4x+),F点的坐标为(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵点E(x,y)是抛物线上一动点,且在x轴下方,∴1<x<1.三角形OEB的面积S=OB•EF=×1×(﹣x2+4x﹣)=﹣(x﹣3)2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国专用车用涂料项目经营分析报告
- 中国粉末冶金模项目创业投资方案
- 智能货架项目可行性研究报告模板范文(立项备案项目申请)
- 养老院年度护理服务改进计划
- 高空作业后安全检查措施
- 部编版二年级下册语文第四单元写话思维导图
- 女性减脂健身训练计划
- DB62T 4111-2020 城市轨道交通雷电防护装置检测技术规范
- 家电行业交货进度监控措施
- 供电所2025年安全生产措施制定与实施计划
- Unit 5 Animals Lesson 2课件 人教精通版三年级英语下册
- DB3309T 106-2024人力资源和社会保障数据分类分级规范
- 租赁法律知识讲座课件
- 初级美甲笔试题及答案
- 2025届吉林省长春市高三质量监测(三)政治试题及答案
- GB/T 24894-2025动植物油脂甘三酯分子2-位脂肪酸组分的测定
- 2024年江苏常州中考满分作文《那么旧那样新》8
- 省课题研究报告格式范文
- 《夏季养生保健常识》课件
- 2025年传统建筑行业的智能门窗技术
- 2024年湖北高中学业水平合格性考试历史试卷真题(含答案详解)
评论
0/150
提交评论