宽带功率放大器的设计_第1页
宽带功率放大器的设计_第2页
宽带功率放大器的设计_第3页
宽带功率放大器的设计_第4页
宽带功率放大器的设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宽带功率放大器的设计龚敏强浏光祜【摘要】介绍一个两级2W的宽带功率放大器设计,频率范围从700MHz~1.1GHz.前级放大器采用MMICPowerAmplifierHMC481MP86,末级采用飞思卡尔公司的LDMOS场效应晶体管MW6S004N.飞思卡尔公司提供的datasheet中没有包含在设计所要求的频段和功率输出值时相应的输入和输出阻抗值.为了正确匹配采用ADS的负载牵引法得到LDMOS场效应晶体管MW6S004N的输入和输出阻抗值,然后使用有耗匹配式放大器的拓扑结构进行实际设计,并使用ADS对设计的放大器进行仿真和优化.【期刊名称】《现代电子技术》【年(卷),期】2009(032)011【总页数】3页(P104-106)【关键词】功率放大器;宽频带;有耗匹配;ADS;LDMOS【作者】龚敏强浏光祜【作者单位】电子科技大学,电子工程学院,四川,成都,610054;电子科技大学,电子工程学院,四川,成都,610054【正文语种】中文【中图分类】TN72宽带功率放大器的应用开始从军用向民用扩展,目前在无线通信、移动电话、卫星通信网、全球定位系统(GPS)、直播卫星接收(DBS)、ITS通信技术及毫米波自动防撞系统等领域有着广阔的应用前景,在光传输系统中,宽带功率放大器也同样占有重要地位。在无线通信、电子战、电磁兼容测试和科学研究等领域,对射频和微波宽带放大器有极大需求,且这些领域对宽带放大器要求各不相同,特别是在通信系统和电子战系统的应用中,对宽带低噪声和功率放大器的性能指标有特殊要求。在设计上传统窄带放大器的端口匹配,一般是按照低噪声或者共扼匹配来设计的,以此获得低噪声放大器或者最大的输出功率。但是,在宽带的条件下,输入/输出阻抗变化是比较大的,此时使用共扼匹配的概念是不合适的。正因为如此,宽带放大器的匹配电路设计方法也与窄带放大器有所不同,宽频带放大器电路结构主要可以分为以下几种[1]:平衡式放大器;反馈式放大器;分布式放大器;有耗匹配式放大器;有源匹配式放大器;达灵顿对结构。各种结构都有各自的特点和适用的情况,在设计中应当根据具体放大器的性能指标要求进行合理的选择。1宽带功率放大器的结构与原理1.1宽带功率放大器的指标分析宽带功率放大器的许多指标和普通的功率放大器是一样的,如饱和输出功率、P1dB压缩点、功率效率、互调失真、谐波失真、微波辐射等,但宽带功率放大器也有特殊之处。1.1.1工作频带宽度工作频带通常指放大器满足其全部性能指标的连续工作频率范围。1.1.2增益平坦度与起伏斜率增益平坦度是指频带内最高增益与最低的分贝数之差,多倍频程放大器的增益平坦度一般是±1~±3dB。在微波系统中有时候需要两个以上的宽频带放大器级联,级联放大器的增益平坦度将变坏,这是由于前级放大器输出驻波比与后级放大器输入驻波比不一致造成的。尤其在宽频带内,级间的反射相位有时迭加,有时抵消,增大了起伏,因此一般要在级联放大器的级间加匹配衰减器。环境温度、直流偏置电压以及时间老化等因素对增益值影响较大,而对增益平坦度的影响较小。1.1.3驻波比与反射损耗宽频带放大器的驻波比指标比窄频带放大器更难保证。倍频程放大器可以达到VSWR<2,当要求较高时,可以用铁氧体隔离器改善驻波比。但是,在多倍频程的情况下,无法获得适用的超宽频带隔离器,所以驻波比不可能很好[1]。LDMOSLateralDoublediffusionMOS(LDMOS)采用双扩散技术,在同一窗口相继进行两次硼磷扩散,由两次杂质扩散横向结深之差可精确地决定沟道长度。沟道长度L可以做得很小,并且不受光刻精度的限制。由于LDMOS的短沟效应,故跨导、漏极电流、工作频率和速度都比一般MOSFET有了很大的提高;在射频应用方面,LDMOS有着更好的线性度、较大的线性增益、高的效率和较低的交叉调制失真。同时,LDMOS是基于成熟的硅工艺器件,比起其他的微波晶体管成本可以降低好几倍[2,3]。1.3有耗匹配式放大器的结构有耗增益补偿匹配网络在增益、放射系数和带宽之间可完成〃重要”的折衷,而且,这种匹配网络的阻抗特性也可改善放大器的稳定性,减小它的尺寸和价格,因为有耗匹配电路的方案简单。在很多实际情况中,为了改善宽带匹配——具有最小的增益波动和输入反射系数,在晶体管输入端并联阻性元件是非常有效的。对较高频率,使用感性电抗元件与电阻串联比基本型具有额外的匹配改善。对于宽带有耗匹配MOSFET高功率放大器,最好使用串联集中参数电感,本设计使用的结构如图1所示[4]。在电阻上并联一个电容可以在频带的高端提升功率增益。图1有耗匹配网络结构1.4宽带阻抗匹配电路在利用有耗匹配网络使增益平坦,同时解决稳定问题后,就需要把管子的输入和输出阻抗匹配到50Q,这就要用到宽带的阻抗匹配电路了。在设计输入阻抗匹配电路时需要考虑稳定、增益、增益平坦、输入驻波比等,在输出匹配电路设计时需要考虑谐波抑制、输出驻波比、损耗等,在设计输出匹配电路之前,要仔细分析是按最大功率输出还是额度功率输出来选择输出阻抗参数,以便于得到需要的输出功率[5]。在设计中,选择微带和电容组合的混合匹配电路,电路结构为n个「型电路串联而成[6,7]。2宽带功率放大器的设计仿真及优化项目要求设计的功率放大器工作频段为700~1100MHz,增益大于30dB,端口驻波比小于1.5,输出功率大于33dBm,增益平坦度为±1dB。为了达到设计要求,采用两级放大形式,前级放大器采用MMICPowerAmplifierHMC481MP86,中间加入一个6dB的电阻衰减器,末级采用飞思卡尔公司的LDMOS场效应晶体管MW6S004N。2.1宽带功率放大器的电路图图2中前级放大器MMICPowerAmplifierHMC481MP86采用厂家提供的大信号S参数文件HMC481MP86deembedded.s2p来代替仿真,末级采用飞思卡尔公司提供的LDMOS功率管模型[8],其输入和输出的阻抗值均由使用ADS的负载牵引法得到[9,10],在匹配时要全面考虑整个频段内各个频率点处的阻抗值。图2功率放大器的电路结构ADS仿真与优化结果图3(a)为S21的曲线,在输入为0dBm的情况下,功率增益有34dB,达到设计要求的增益大于30dB;在输出功率大于33dBm,从图3中的几个点可以看出,增益平坦度在±1dB;图3(b)为稳定性系数;图3(c)为输入驻波比;图3(d)为输出驻波比。2.3测试结果实物测调试,使用频谱仪来测量功率,使用网络分析仪来看整个频率段的增益平坦度和输入、输出驻波比,并根据客户要求在输出端口后加入一个隔离器。在输入信号功率为0dBm情况下,测试数据如表1所示。图3电路仿真结果表1测试结果频率/MHz功率输出/dBm输入驻波比输出驻波比700750800900105011003结语宽带功率放大器有着广阔的应用前景,设计要求也不同于一般的功率放大器,对阻抗匹配的要求也更加严格。文中通过采用有耗匹配网络改善功率管的增益平坦度问题,使得阻抗匹配电路的结构变得简单。整个功率放大器的指标均达到用户的设计要求,已经交付使用。参考文献欧兵.225~450MHz宽带线性功率放大器的研制[D].成都:电子科技大学,2003.MarkP,JohnR,Gajadharsing.TheoryandDesignofanUltra-LinearSquare-LawApproximatedLDMOSPowerAmplifierinClassABOperation[J].IEEE.Trans.onMicrowaveTheoryandTechiques,2002,50(9):2176-2180.BurgerW,R,AgyekumE,AyoolaO,etal.RF-LDMOS:ASilicon-based,HighPower,HighEfficiencyLinearPMAmpliferTechnology[Z].[美]AndreiGrebennikov.射频与微波功率放大器设计[M].张玉兴,赵宏飞,译.北京:电子工业出版社,2006.杨万群.L波段宽带功率放大器研究[D].成都:电子科技大学,2005.李辉,陈效键.匹配电路谐波特性对功率放大器性能的影响[J].固体电子学研究与进展,2002,22(1):45-48.眭玉龙,张洪.微带技术在高频大功率放大器中的运用[J].广播与电视技术,2001,28(6):115-119.FreescaleseMiconductorlnC.FreescalesemiconductorMetldMOSMod

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论