




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题15.1锐角三角函数和解直角三角形备战2021年中考数学精选考点专项突破卷(1)一、单选题(共30分)1.(本题3分)(2020·四川中考真题)如图所示,的顶点在正方形网格的格点上,则的值为()
A. B. C.2 D.【答案】A【分析】如图,取格点E,连接BE,构造直角三角形,利用三角函数解决问题即可;【详解】如图,取格点E,连接BE,由题意得:,,,∴.故答案选A.【点睛】本题主要考查了解直角三角形的相关知识点,准确构造直角三角形,利用勾股定理求边是解题的关键.2.(本题3分)(2020·四川雅安·中考真题)如图,在中,,若,则的长为()A.8 B.12 C. D.【答案】C【分析】利用正弦的定义得出AB的长,再用勾股定理求出BC.【详解】解:∵sinB==0.5,∴AB=2AC,∵AC=6,∴AB=12,∴BC==,故选C.【点睛】本题考查了正弦的定义,以及勾股定理,解题的关键是先求出AB的长.3.(本题3分)(2020·湖南中考真题)从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()A.米 B.米 C.21米 D.42米【答案】A【分析】在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.【详解】解:根据题意可得:船离海岸线的距离为42÷tan30°=42(米).
故选:A.【点睛】本题考查解直角三角形的应用-仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.4.(本题3分)(2020·广西河池·中考真题)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()A. B. C. D.【答案】D【分析】直接利用勾股定理得出AB的长,再利用锐角三角函数得出答案.【详解】解:如图所示:∵∠C=90°,BC=5,AC=12,∴,∴.故选:D.【点睛】本题考查勾股定理的应用和锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,解题的关键是理解三角函数的定义.5.(本题3分)(2020·山东烟台·中考真题)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A. B. C. D.【答案】D【分析】先根据矩形的性质和折叠的性质得AF=AD=BC=5,EF=DE,在Rt△ABF中,利用勾股定理可求出BF的长,则CF可得,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF中根据勾股定理可得关于x的方程,解方程即可得到x,进一步可得DE的长,再根据正切的定义即可求解.【详解】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,BF=,∴CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3﹣x)2,解得x=,∴DE=EF=3﹣x=,∴tan∠DAE=,故选:D.【点睛】本题考查了翻折变换、矩形的性质、锐角三角函数和勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.6.(本题3分)(2020·黑龙江朝鲜族学校中考真题)如图,在△ABC中,sinB=,tanC=2,AB=3,则AC的长为()A. B. C. D.2【答案】B【分析】过A点作AH⊥BC于H点,先由sin∠B及AB=3算出AH的长,再由tan∠C算出CH的长,最后在Rt△ACH中由勾股定理即可算出AC的长.【详解】解:过A点作AH⊥BC于H点,如下图所示:由,且可知,,由,且可知,,∴在中,由勾股定理有:.故选:B.【点睛】本题考查了解直角三角形及勾股定理等知识,如果图形中无直角三角形时,可以通过作垂线构造直角三角形进而求解.7.(本题3分)(2020·广东深圳·中考真题)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米 B.米 C.200sin70°米 D.米【答案】B【分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【详解】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°-70°=20°,∴∠PTQ=70°,∴,∴,即河宽米,故选:B.【点睛】此题考查了解直角三角形的应用-方向角问题,掌握方向角与正切函数的定义是解题的关键.8.(本题3分)(2020·辽宁中考真题)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东方向,且与他相距,则图书馆A到公路的距离为()A. B. C. D.【答案】A【分析】根据题意可得△OAB为直角三角形,∠AOB=30°,OA=200m,根据三角函数定义即可求得AB的长.【详解】解:由已知得,∠AOB=90°60°=30°,OA=200m.
则AB=OA=100m.故选:A.【点睛】本题主要考查了解直角三角形的应用——方向角问题,正确记忆三角函数的定义是解决本题的关键.9.(本题3分)(2020·柳州市柳林中学中考真题)如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则cosB==()A. B. C. D.【答案】C【分析】直接利用勾股定理得出BC的长,再利用锐角三角函数关系得出答案.【详解】∵在Rt△ABC中,∠C=90°,AB=4,AC=3,∴,∴.故选:C.【点睛】本题主要考查了勾股定理以及锐角三角函数的定义,正确掌握边角关系是解题关键.10.(本题3分)(2020·四川广元·中考真题)规定:给出以下四个结论:(1);(2);(3);(4)其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个【答案】C【分析】根据题目所规定的公式,化简三角函数,即可判断结论.【详解】解:(1),故此结论正确;(2),故此结论正确;(3)故此结论正确;(4)==,故此结论错误.故选:C.【点睛】本题属于新定义问题,主要考查了三角函数的知识,解题的关键是熟练掌握三角函数的基础知识,理解题中公式.二、填空题(共30分)11.(本题3分)(2020·四川中考真题)_______.【答案】【解析】.故答案为.12.(本题3分)(2020·山东中考真题)如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点处,EF为折痕,连接.若CF=3,则tan=_____.【答案】【分析】连接AF,设CE=x,用x表示AE、EF,再证明∠AEF=90°,由勾股定理得通过AF进行等量代换列出方程便可求得x,再进一步求出B′C′,便可求得结果.【详解】解:连接AF,设CE=x,则C′E=CE=x,BE=B′E=10﹣x,∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=∠D=90°,∴AE2=AB2+BE2=82+(10﹣x)2=164﹣20x+x2,EF2=CE2+CF2=x2+32=x2+9,由折叠知,∠AEB=∠AEB′,∠CEF=∠C′EF,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEF=∠AEB′+∠C′EF=90°,∴AF2=AE2+EF2=164﹣20x+x2+x2+9=2x2﹣20x+173,∵AF2=AD2+DF2=102+(8﹣3)2=125,∴2x2﹣20x+173=125,解得,x=4或6,当x=6时,EC=EC′=6,BE=B′E=8﹣6=2,EC′>B′E,不合题意,应舍去,∴CE=C′E=4,∴B′C′=B′E﹣C′E=(10﹣4)﹣4=2,∵∠B′=∠B=90°,AB′=AB=8,∴tan∠B'AC′==.故答案为:.【点睛】本题考查了矩形的性质,折叠的性质,锐角三角函数,勾股定理,掌握折叠的性质是解题关键.13.(本题3分)(2020·山东中考真题)如图,人字梯,的长都为2米.当时,人字梯顶端高地面的高度是____米(结果精确到.参考依据:,,)【答案】1.5.【分析】在中,根据锐角三角函数正弦定义即可求得答案.【详解】在中,∵,,∴,∴.故答案为1.5.【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.14.(本题3分)(2020·四川中考真题)如图,我市在建高铁的某段路基横断面为梯形,∥,长为6米,坡角为45°,的坡角为30°,则的长为________米(结果保留根号)【答案】【分析】过C作CE⊥AB于E,DF⊥AB于F,分别在Rt△CEB与Rt△DFA中使用三角函数即可求解.【详解】解:过C作CE⊥AB于E,DF⊥AB于F,可得矩形CEFD和Rt△CEB与Rt△DFA,∵BC=6,∴CE=,∴DF=CE=,∴,故答案为:.【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.15.(本题3分)(2020·内蒙古)如图,在矩形中,是对角线,,垂足为E,连接.若,则如的值为_____.【答案】【分析】过C向BD作垂线,可以构造出一个30°直角三角△CDF,进而求出,设直角最小边DF=a,并用a的代数式表示出其他边,即可求出答案.【详解】解:过C作CF⊥BD,垂足为F点∵矩形ABCD,∴AD∥BC,AB=CD∴∠DBC=∠DCF=∠BAE=30°设DF=a,则CF=,CD=,BD=,∵∴∠AEB=∠CFD=90°∴,∴EB=DF=a∴EF=-a-a=2a∴故答案是.【点睛】本题主要考察了矩形的性质和解直角三角形知识点,三角形全等的判定与性质,掌握以上知识是解题关键.16.(本题3分)(2020·湖北孝感·中考真题)某型号飞机的机翼形状如图所示,根据图中数据计算的长为______.(结果保留根号)【答案】【分析】如图(见解析),先在中,解直角三角形可求出CF的长,再根据等腰直角三角形的判定与性质可得DE的长,从而可得CE的长,然后根据线段的和差即可得.【详解】如图,过A作,交DF于点E,则四边形ABFE是矩形由图中数据可知,,,,在中,,即解得是等腰三角形则的长为故答案为:.【点睛】本题考查了解直角三角形的应用、等腰三角形的判定与性质等知识点,掌握解直角三角形的方法是解题关键.17.(本题3分)(2020·甘肃中考真题)如图所示,是放置在正方形网格中的一个角,则的值是________.【答案】【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB,设小正方形的边长为1,可以求出OA、OB、AB的长度,由勾股定理的逆定理可得是直角三角形,再根据三角函数的定义可以求出答案.【详解】连接AB如图所示:设小正方形的边长为1,∴==10,,,∴是直角三角形,∴,故答案为:.【点睛】本题主要考查了勾股定理的逆定理和正弦函数的定义,熟练掌握技巧即可得出答案.18.(本题3分)(2020·贵州中考真题)如图所示,在四边形中,,,.连接,,若,则长度是_________.【答案】10【分析】根据直角三角形的边角间关系,先计算,再在直角三角形中,利用勾股定理即可求出.【详解】解:在中,∵,∴.在中,.故答案为:10.【点睛】本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.19.(本题3分)(2020·广西中考真题)如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是_____.【答案】【分析】根据余弦的定义解答即可.【详解】解:在Rt△ABC中,cosA==,故答案为:.【点睛】此题考查解直角三角形,正确掌握三角函数的计算公式是解题的关键.20.(本题3分)(2020·浙江中考真题)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是______.【答案】【分析】作AT//BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距=a,然后再.求出BH、AH即可解答.【详解】解:如图,作AT//BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距=a观察图像可知:所以tanβ=.故答案为.【点睛】本题考查了正六边形的性质和解直角三角形的应用,解题的关键在于正确添加常用辅助线、构造直角三角形求解.三、解答题(共60分)21.(本题6分)(2020·内蒙古中考真题)图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)【答案】177cm【分析】记地面水平线为,通过作辅助线构造直角三角形,分别在Rt和在Rt中,根据锐角三角函数求出OE、BF,而点B到地面的高度为175+15=190cm,进而求OG即可.【详解】解:如图,过点B作地面的垂线,垂足为D,过点A作地面GD的平行线,交OC于点E,交BD于点F,在Rt中,∠AOE=26°,OA=10,则OE=OA•cos∠AOE≈10×0.90=9cm,在Rt中,∠BAF=30°,AB=8,则BF=AB•sin∠BOF=8×=4cm,∴OG=BD﹣BF﹣OE=(175+15)﹣4﹣9=177cm,答:旋转头的固定点O与地面的距离应为177cm.【点睛】本题考查的是解直角三角形的实际应用,掌握构造直角三角形与矩形,利用锐角三角函数与矩形的性质是解题的关键.22.(本题7分)(2020·湖南永州·中考真题)计算:.【答案】0【分析】依次计算零指数幂,化简立方根乘以特殊的三角函数值,最后一项利用负指数幂,最后相加减即可得出答案.【详解】解:原式【点睛】此题主要考查了实数的运算以及特殊的三角函数值,熟练掌握运算法则是解题的关键.23.(本题8分)(2020·吉林中考真题)如图,在中,是对角线、的交点,,,垂足分别为点、.(1)求证:.(2)若,,求的值.【答案】(1)见解析1;(2)【分析】(1)根据题意由平行四边形性质得,由ASA证得,即可得出结论;(2)根据题意由(1)得OE=OF,则OE=2,在Rt△OEB中,由三角函数定义即可得出结果.【详解】解:(1)证明:在中,∵,∴∴又∵∴∴(2)∵,∴∵∴在中,,.【点睛】本题考查平行四边形的性质、全等三角形的判定与性质、三角函数定义等知识;熟练掌握平行四边形的性质与全等三角形的判定是解题的关键.24.(本题8分)(2020·广西中考真题)如图,一艘渔船位于小岛的北偏东方向,距离小岛的点处,它沿着点的南偏东的方向航行.(1)渔船航行多远距离小岛最近(结果保留根号)?(2)渔船到达距离小岛最近点后,按原航向继续航行到点处时突然发生事故,渔船马上向小岛上的救援队求救,问救援队从处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?【答案】(1);(2)南偏东;【分析】(1)过点作的垂线交于点,则AD为所求,根据已知条件得到∠BAD=45°即可解答;(2)根据特殊角的锐角三角函数值得到∠C=30°,∠DBC=60°,从而求出BC的长度,再求出∠DBE的度数,即可得到∠EBC的度数.【详解】解:(1)过点作的垂线交于点,∵垂线段最短,上的点距离点最近,即为所求,由题意可知:∠BAF=30°,∠CAF=15°,∴,∴渔船航行时,距离小岛最近.(2)在中,,∠DBC=60°,∵∠ABD=45°,∠ABE=90°-30°=60°,∴,.答:从处沿南偏东出发,最短行程.【点睛】本题考查了解直角三角形的应用中的方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.25.(本题9分)(2020·四川中考真题)如图,两楼地面距离BC为米,楼AB高30米,从楼AB的顶部点A测得楼CD顶部点D的仰角为45度.(1)求的大小;(2)求楼CD的高度(结果保留根号).【答案】(1)75°;(2)【分析】(1)如图:过点A作于点E,在Rt△ABC中运用三角函数可得,即、进一步可得∠EAC=30°,再结合即可解答;(2)先根据题意求得DE=AE=,然后在Rt△ACE中解直角三角形求得CE,最后利用CD=CE+DE进行计算即可.【详解】(1)如图:过点A作于点E,∵在Rt△ABC中,∵AE//BC;(2)∵在RtAED中,AE=BC=,∠DAE=45°∴DE=AE=∵在Rt△ACE中,∠CAE=30°∴CE=tan30°·AE=30.【点睛】本题主要考查了运用三角函数值求角的大小和解直角三角形,灵活应用三角函数知识是解答本题的关键.26.(本题10分)(2020·湖北中考真题)如图矩形ABCD中,AB=20,点E是BC上一点,将沿着AE折叠,点B刚好落在CD边上的点G处,点F在DG上,将沿着AF折叠,点D刚好落在AG上点H处,此时.(1)求证:(2)求AD的长;(3)求的值.【答案】(1)见解析;(2)12;(3)【分析】(1)由矩形的性质得出∠B=∠D=∠C=90°,由折叠的性质得出∠AGE=∠B=90°,∠AHF=∠D=90°,证得∠EGC=∠GFH,则可得出结论;(2)由面积关系可得出GH:AH=2:3,由折叠的性质得出AG=AB=GH+AH=20,求出GH=8,AH=12,则可得出答案;(3)由勾股定理求出DG=16,设DF=FH=x,则GF=16-x,由勾股定理得出方程,解出x=6,由锐角三角函数的定义可得出答案.【详解】(1)证明:因为四边形ABCD是矩形所以,(2)解:(3)解:在直角三角形ADG中,由折叠对称性知,解得:x=6,所以:HF=6在直角三角形GHF中,.【点睛】本题考查了矩形的性质,翻折变换,锐角三角函数,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.27.(本题12分)(2020·重庆中考真题)如图,在中,,,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:;(2)如图2所示,在点D运动的过程中,当时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使的值最小.当的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能网联汽车自动驾驶技术发展及车险产品创新趋势报告
- 光伏电站运维智能化2025年设备选型与应用报告
- 2025年制造业数据治理策略在智能制造中的应用与挑战报告
- 2025年校园安全管理报告:智慧校园下的校园设施安全监管
- 2025年烟台市烟台山医院住院医师规范化培训预招生考前自测高频考点模拟试题及答案详解(各地真题)
- 2025年技术创新驱动的抽水蓄能行业市场发展趋势研究报告
- 2025年工业互联网平台微服务架构性能测试报告:云原生架构与弹性扩展
- 2025年医药行业CRO模式下的临床试验失败案例分析与管理启示报告
- 2025年工业互联网平台射频识别(RFID)在智能工厂生产效率提升中的应用与改进报告
- 2025-2030工业软件云化迁移过程中的数据安全合规解决方案评估报告
- 2025至2030中国生物基化学品行业产业运行态势及投资规划深度研究报告
- 雾化吸入课件
- 航海船舶运输管理总结
- 食物中毒的心理援助与危机干预
- 2022星闪无线短距通信技术(SparkLink 1.0)安全白皮书网络安全
- 卫生公共基础知识考试大纲
- 小学数学六年级上册第五单元课件
- 《电子凭证会计数据标准-全面数字化的电子发票(试行版)》指南
- 湖南土建中级职称考试复习总结
- 混合痔痔的护理查房
- 大学物理实验长测量
评论
0/150
提交评论