版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省宁德市部分一级达标中学数学高一第二学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在三棱柱中,底面,是正三角形,若,则该三棱柱外接球的表面积为()A. B. C. D.2.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040t5070根据上表提供的数据,求出y关于x的回归直线方程为y=6.5x+17.5,则tA.40 B.50 C.60 D.703.已知、是圆:上的两个动点,,,若是线段的中点,则的值为()A. B. C. D.4.的值等于()A. B. C. D.5.已知直线和,若,则实数的值为A.1或 B.或 C.2或 D.或6.直线的倾斜角的大小为()A. B. C. D.7.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,128.集合,,则=()A. B. C. D.9.把十进制数化为二进制数为A. B.C. D.10.若,则下列不等式成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=.12.函数在区间上的值域为______.13.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.14.若各项均为正数的等比数列,,则它的前项和为______.15.已知向量,且,则的值为______16.已知圆C的方程为,一定点为A(1,2),要使过A点作圆的切线有两条,则a的取值范围是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,a=3,b−c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.18.已知的内角所对的边分别为,且,.(1)若,求角的值;(2)若,求的值.19.已知.(1)当时,解不等式;(2)若不等式的解集为,求实数的值.20.某学校高一、高二、高三的三个年级学生人数如下表
高三
高二
高一
女生
133
153
z
男生
333
453
633
按年级分层抽样的方法评选优秀学生53人,其中高三有13人.(1)求z的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取2人,经检测她们的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把这2人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过3.5的概率.21.对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:分组频数频率2440.120.05合计1(1)求出表中,及图中的值;(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
设球心为,的中心为,求出与,利用勾股定理求出外接球的半径,代入球的表面积公式即可.【题目详解】设球心为,的中心为,则,,球的半径,所以球的表面积为.故选:C【题目点拨】本题考查多面体外接球问题,球的表面积公式,属于中档题.2、C【解题分析】分析:由题意,求得这组熟记的样本中心(x详解:由题意,根据表中的数据可得x=2+4+5+6+85把(x,y)代入回归直线的方程,得点睛:本题主要考查了回归分析的初步应用,其中熟记回归直线的基本特征——回归直线方程经过样本中心点是解答的关键,着重考查了推理与运算能力.3、A【解题分析】由题意得,所以,选A.4、D【解题分析】
利用诱导公式先化简,再利用差角的余弦公式化简得解.【题目详解】由题得原式=.故选D【题目点拨】本题主要考查诱导公式和差角的余弦公式化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.5、C【解题分析】
利用直线与直线垂直的性质直接求解.【题目详解】∵直线和,若,∴,得,解得或,∴实数的值为或.故选:C.【题目点拨】本题考查直线与直线垂直的性质等基础知识,考查运算求解能力,属于基础题.6、B【解题分析】
由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.7、B【解题分析】
根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组、第3组抽取的号码.【题目详解】根据系统抽样原理知,抽样间距为200÷40=5,
当第5组抽出的号码为22时,即22=4×5+2,
所以第1组至第3组抽出的号码依次是2,7,1.
故选:B.【题目点拨】本题考查了系统抽样方法的应用问题,是基础题.8、C【解题分析】
根据交集定义直接求解可得结果.【题目详解】根据交集定义知:故选:【题目点拨】本题考查集合运算中的交集运算,属于基础题.9、C【解题分析】选C.10、B【解题分析】
利用不等式的性质,进行判断即可.【题目详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【题目点拨】本题考查均值不等式及利用不等式性质比较大小.二、填空题:本大题共6小题,每小题5分,共30分。11、13【解题分析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.12、【解题分析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【题目详解】,,则,.故答案为:.【题目点拨】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.13、【解题分析】
由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【题目详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【题目点拨】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.14、【解题分析】
利用等比数列的通项公式求出公比,由此能求出它的前项和.【题目详解】设各项均为正数的等比数列的公比为,由,得,且,解得,它的前项和为.故答案:.【题目点拨】本题考查等比数列的前项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.15、-7【解题分析】
,利用列方程求解即可.【题目详解】,且,,解得:.【题目点拨】考查向量加法、数量积的坐标运算.16、【解题分析】
使过A点作圆的切线有两条,定点在圆外,代入圆方程计算得到答案.【题目详解】已知圆C的方程为,要使过A点作圆的切线有两条即点A(1,2)在圆C外:恒成立.综上所述:故答案为:【题目点拨】本题考查了点和圆的位置关系,通过切线数量判断位置关系是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)由题意列出关于a,b,c的方程组,求解方程组即可确定b,c的值;(Ⅱ)由题意结合正弦定理和两角和差正余弦公式可得的值.【题目详解】(Ⅰ)由题意可得:,解得:.(Ⅱ)由同角三角函数基本关系可得:,结合正弦定理可得:,很明显角C为锐角,故,故.【题目点拨】本题主要考查余弦定理、正弦定理的应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.18、(1)或;(2)、.【解题分析】
(1)由先求的值,再求角即可;(2)先由求出,再根据求出即可.【题目详解】(1)由已知,又,所以,即,或;(2)因为,由可得,又因为,所以,即,总之、.【题目点拨】本题主要考查正弦定理、余弦定理及三角形面积公式的应用,属常规考题.19、(1);(2)【解题分析】
(1)根据求解一元二次不等式的方法直接求解;(2)根据一元二次不等式的解就是对应一元二次方程的根这一特点列方程求解.【题目详解】解:(1),解得.∴不等式的解集为.(2)∵的解集为,∴方程的两根为0,3,∴解得∴,的值分别为3,1.【题目点拨】(1)对于形如的一元二次不等式,解集对应的形式是:“两根之内”;若是,解集对应的形式是:“两根之外”;(2)一元二次不等式解集的两个端点值,是一元二次方程的两个解同时也是二次函数图象与轴交点的横坐标.20、(1)433(2)(3)【解题分析】
(1)设该校总人数为n人,由题意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)设所抽样本中有m个女生,因为用分层抽样的方法在高一女生中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2名女生,3名男生,分别记作S1,S2;B1,B2,B3,则从中任取2人的所有基本事件为(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共13个,其中至少有1名女生的基本事件有7个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),所以从中任取2人,至少有1名女生的概率为.(3)样本的平均数为,那么与样本平均数之差的绝对值不超过3.5的数为1.4,2.6,1.2,2.7,1.3,1.3这6个数,总的个数为2,所以该数与样本平均数之差的绝对值不超过3.5的概率为.21、(1);;;(2)60人.(3)【解题分析】
(1)根据频率,频数和样本容量之间的关系即频率等于频数除以样本容量,写出算式,求出式子中的字母的值;(2)该校高三学生有240人,分组内的频率是0.25,估计该校高三学生参加社区服务的次数在此区间内的人数为60人;(3)设在区间内的人为,,,,在区间内的人为,,写出任选2人的所有基本事件,利用对立事件求得答案.【题目详解】(1)由分组内的频
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生火锅店创业
- 护理查房中常用评估量表的应用技巧
- 零碳工业园高效能绿色制造方案
- 开放空间引导课程
- 数智零售推动高品质门店与产教融合新生态构建
- 八段锦入门:适合老年人的居家运动指南
- 城市空间结构的演化特征与趋势分析
- 钢铁装置艺术课件
- 隧道消防施工合同(3篇)
- 独居老人安全防护要点
- 高中学生学籍表模板(范本)
- 膳食营养指导和疾病预防(卢世琰)课件
- 办公楼建筑能源管理平台技术方案书
- 实验报告单模板
- 河南省铭玮昊化工科技有限公司年产1000吨溴硝醇、100吨磺酰胺、200吨叔丁酯项目环境影响报告书
- 灭火器检查记录表模板实用文档
- 《赢利 未来10年的经营能力》读书笔记PPT模板思维导图下载
- 2023年成都交子金融控股集团有限公司招聘考试备考题库及答案解析
- YS/T 337-2009硫精矿
- 《语言学纲要》文字1课件
- 英语关联词汇总大全
评论
0/150
提交评论