




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市红旗实验中学2024届数学高一第二学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,且,其前n项之和为,则满足不等式的最小整数n是()A.5 B.6 C.7 D.82.已知,若关于x的不等式的解集为,则()A. B. C.1 D.73.若,,则()A. B. C. D.4.直线的倾斜角为A. B. C. D.5.一个圆锥的表面积为,它的侧面展开图是圆心角为的扇形,该圆锥的母线长为()A. B.4 C. D.6.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.7.函数的最小值为(
)A.6 B.7 C.8 D.98.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.669.已知两条直线,,两个平面,,下面说法正确的是()A. B. C. D.10.下列命题中正确的是()A.第一象限角必是锐角; B.相等的角终边必相同;C.终边相同的角相等; D.不相等的角其终边必不相同.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为___________.12.点与点关于直线对称,则直线的方程为______.13.已知无穷等比数列的所有项的和为,则首项的取值范围为_____________.14.过直线上一点作圆的两条切线,切点分别为,若的最大值为,则实数__________.15.函数的定义域记作集合,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数,,,),记骰子向上的点数为,则事件“”的概率为________.16.设不等式组所表示的平面区域为D.若直线与D有公共点,则实数a的取值范围是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路.(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长.18.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.19.化简求值:(1)化简:(2)求值,已知,求的值20.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.21.已知等比数列的首项为,公比为,它的前项和为.(1)若,,求;(2)若,,且,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
首先分析题目已知3an+1+an=4(n∈N*)且a1=9,其前n项和为Sn,求满足不等式|Sn﹣n﹣6|<的最小整数n.故可以考虑把等式3an+1+an=4变形得到,然后根据数列bn=an﹣1为等比数列,求出Sn代入绝对值不等式求解即可得到答案.【题目详解】对3an+1+an=4变形得:3(an+1﹣1)=﹣(an﹣1)即:故可以分析得到数列bn=an﹣1为首项为8公比为的等比数列.所以bn=an﹣1=8×an=8×+1所以|Sn﹣n﹣6|=解得最小的正整数n=7故选C.【题目点拨】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列an﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.2、B【解题分析】
由韦达定理列方程求出,即可得解.【题目详解】由已知及韦达定理可得,,,即,,所以.故选:.【题目点拨】本题考查一元二次方程和一元二次不等式的关系、韦达定理的应用等,属于一般基础题.3、D【解题分析】
利用集合的补集的定义求出的补集;利用子集的定义判断出.【题目详解】解:,,,,故选:.【题目点拨】本题考查利用集合的交集、补集、并集定义求交集、补集、并集;利用集合包含关系的定义判断集合的包含关系.4、D【解题分析】
把直线方程的一般式方程化为斜截式方程,求出斜率,根据斜率与倾斜角的关系,求出倾斜角.【题目详解】,设直线的倾斜角为,,故本题选D.【题目点拨】本题考查了直线方程之间的转化、利用斜率求直线的倾斜角问题.5、B【解题分析】
设圆锥的底面半径为,母线长为,利用扇形面积公式和圆锥表面积公式,求出圆锥的底面圆半径和母线长.【题目详解】设圆锥的底面半径为,母线长为它的侧面展开图是圆心角为的扇形又圆锥的表面积为,解得:母线长为:本题正确选项:【题目点拨】本题考查了圆锥的结构特征与应用问题,关键是能够熟练应用扇形面积公式和圆锥表面积公式,是基础题.6、C【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【题目点拨】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7、C【解题分析】
直接利用均值不等式得到答案.【题目详解】,时等号成立.故答案选C【题目点拨】本题考查了均值不等式,属于简单题.8、C【解题分析】
根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【题目详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【题目点拨】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.9、D【解题分析】
满足每个选项的条件时能否找到反例推翻结论即可。【题目详解】A:当m,n中至少有一条垂直交线才满足。B:很明显m,n还可以异面直线不平行。C:只有当m垂直交线时,否则不成立。故选:D【题目点拨】此题考查直线和平面位置关系,一般通过反例排除法即可解决,属于较易题目。10、B【解题分析】
根据终边相同的角和象限角的定义,举反例或直接进行判断可得最后结果.【题目详解】是第一象限角,但不是锐角,故A错误;与终边相同,但他们不相等,故C错误;与不相等,但他们的终边相同,故D错误;因为角的始边在x轴的非负半轴上,则相等的角终边必相同,故B正确.故选:B【题目点拨】本题考查了终边相同的角和象限角的定义,利用定义举出反例进行判断是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先利用二倍角公式对函数解析式进行化简整理,进而利用三角函数最小正周期公式可得函数的最小正周期.【题目详解】解:由题意可得:,可得函数的最小正周期为:,故答案为:.【题目点拨】本题主要考查二倍角的化简求值和三角函数周期性的求法,属于基础知识的考查.12、【解题分析】
根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【题目详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【题目点拨】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.13、【解题分析】
设等比数列的公比为,根据题意得出或,根据无穷等比数列的和得出与所满足的关系式,由此可求出实数的取值范围.【题目详解】设等比数列的公比为,根据题意得出或,由于无穷等比数列的所有项的和为,则,.当时,则,此时,;当时,则,此时,.因此,首项的取值范围是.故答案为:.【题目点拨】本题考查利用无穷等比数列的和求首项的取值范围,解题的关键就是结合题意得出首项和公比的关系式,利用不等式的性质或函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.14、1或;【解题分析】
要使最大,则最小.【题目详解】圆的标准方程为,圆心为,半径为.∵若的最大值为,∴,解得或.故答案为1或.【题目点拨】本题考查直线与圆的位置关系,解题思路是平面上对圆的张角问题,显然在点固定时,圆外的点作圆的两条切线,这两条切线间的夹角是最大角,而当点离圆越近时,这个又越大.15、【解题分析】要使函数有意义,则且,即且,即,随机地投掷一枚质地均匀的正方体骰子,记骰子向上的点数为,则,则事件“”的概率为.16、【解题分析】
画出不等式组所表示的平面区域,直线过定点,根据图像确定直线斜率的取值范围.【题目详解】画出不等式组所表示的平面区域如下图所示,直线过定点,由图可知,而,所以.故填:.【题目点拨】本小题主要考查不等式表示区域的画法,考查直线过定点问题,考查直线斜率的取值范围的求法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)445米;(2)在弧的中点处【解题分析】
(1)假设该扇形的半径为米,在中,利用余弦定理求解;(2)设设,在中根据正弦定理,用和表示和,进而利用和差公式和辅助角公式化简,再根据三角函数的性质求最值.【题目详解】(1)方法一:设该扇形的半径为米,连接.由题意,得(米),(米),在中,即,解得(米)方法二:连接,作,交于,由题意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)连接,设,在中,由正弦定理得:,于是,则,所以当时,最大为,此时在弧的中点处.【题目点拨】本题考查正弦定理,余弦定理的实际应用,结合了三角函数的化简与求三角函数的最值.18、(1)(2)3≤x≤1.【解题分析】试题分析:(1)利用两角差的正切公式建立函数关系式,根据基本不等式求最值,最后根据正切函数单调性确定最大时取法,(2)利用两角差的正切公式建立等量关系式,进行参变分离得,再根据a的范围确定范围,最后解不等式得的取值范围.试题解析:(1)当时,过作的垂线,垂足为,则,且,由已知观察者离墙米,且,则,所以,,当且仅当时,取“”.又因为在上单调增,所以,当观察者离墙米时,视角最大.(2)由题意得,,又,所以,所以,当时,,所以,即,解得或,又因为,所以,所以的取值范围为.19、(1);(2)【解题分析】
(1)根据诱导公式先化简每一项,然后即可得到最简结果;(2)利用“齐次”式的特点,分子分母同除以,将其化简为关于的形式即可求值.【题目详解】(1)原式,(2)原式【题目点拨】本题考查诱导公式和同角三角函数的基本关系的运用,难度较易.(1)利用诱导公式进行化简时,掌握“奇变偶不变”的实际含义进行化简即可;(2)求解形如的“齐次式”的值,注意采用分子分母同除以的方法,将其化简为关于的形式再求值.20、(1);(2).【解题分析】
(1)由题,先求得的大小,再根据数量积的公式,可得与的夹角;(2)先求得的模长,再直接利用向量几何意义的公式,求得结果即可.【题目详解】(1)∵,∴,又∵,∴,∴,∴(2)∵,∴∴向量在向量上的投影为【题目点拨】本题考查了向量的知识,熟悉向量数量积的知识点和几
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工合同竞业禁止协议书
- 养生食谱创业计划书
- 合同协议书条款格式模板
- 花园改造设计合同协议书
- 简易道路养护合同协议书
- 照片档案盒项目投资可行性研究分析报告(2024-2030版)
- FHPI在制备治疗猫传染性腹膜炎药物中的应用发明专利
- 新楼盘定金合同协议书
- 创新创业计划书老年服装
- 内墙粉刷合同简单协议书
- 福建百校联考2025届高三5月高考押题卷-化学试卷(含答案)
- GB 45672-2025车载事故紧急呼叫系统
- 规划测量协议书
- 模具开发保密协议书
- DB41T 2794-2024高速公路隧道和高边坡监测技术指南
- 2025年会展经济与管理考试试题及答案
- 2025年护士考试安全管理试题及答案
- 2024秋招北森题库数学百题
- 招聘社工考试试题及答案
- 护理三基三严培训课件
- 砖和砌块材料试题及答案
评论
0/150
提交评论